Skip to main content
Log in

Fine Sand and Clay Sediment Acoustic Properties of the Novel Sediment Sample from the Arabian Sea: Experimental Investigations and Biot–Stoll Model Validation

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea. The measured physical parameters included mean grain size, mass density, bulk density, salinity, porosity, permeability, pore size and mineralogical composition. Acoustic properties, including sound speed and attenuation, in the high frequency range of 90–170 kHz were analyzed. A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments. The standard deviation of mean sound speed in fresh water was 0.75 m/s, and attenuation was observed in the range of 0.43 to 0.61 dB/m. The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s, respectively. Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments. Sound velocity variation within sandy sediment is low, consistent with expected results, and smaller than the predicted uncertainty. However, clay sediment exhibited a positive linear correlation and low sound speed variation. Attenuation increased linearly with frequency for both sediments. Finally, the laboratory results were validated by using the Biot–Stoll model. The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot–Stoll model. Measured attenuation aligned more with Biot–Stoll model predictions due to improved permeability, tortuosity and pore size parameter fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ahmed, F., Xiang, X.B., Jiang, C.C., Xiang, G. and Yang, S., 2023. Survey on traditional and AI based estimation techniques for hydrodynamic coefficients of autonomous underwater vehicle, Ocean Engineering, 268, 113300.

    Article  Google Scholar 

  • Argo, T.F., 2012. Laboratory Measurements of Sound Speed and Attenuation of Water-Saturated Granular Sediments, University of Texas at Austin, Austin.

    Google Scholar 

  • Avnimelech, Y., Ritvo, G., Meijer, L.E. and Kochba, M., 2001. Water content, organic carbon and dry bulk density in flooded sediments, Aquacultural Engineering, 25(1), 25–33.

    Article  Google Scholar 

  • Bachman, R.T., 1985. Acoustic and physical property relationships in marine sediment, The Journal of the Acoustical Society of America, 78(2), 616–621.

    Article  ADS  Google Scholar 

  • Bachman, R.T., 1989. Estimating velocity ratio in marine sediment, The Journal of the Acoustical Society of America, 86(5), 2029–2032.

    Article  ADS  Google Scholar 

  • Baldwin, K.C., Celikkol, B. and Silva, A.J., 1981. Marine sediment acoustic measurement system, Ocean Engineering, 8(5), 481–488.

    Article  Google Scholar 

  • Best, A.I. and Gunn, D.E., 1999. Calibration of marine sediment core loggers for quantitative acoustic impedance studies, Marine Geology, 160(1–2), 137–146.

    Article  ADS  Google Scholar 

  • Biot, M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, The Journal of the Acoustical Society of America, 28(2), 168–178.

    Article  ADS  MathSciNet  Google Scholar 

  • Biot, M.A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, The Journal of the Acoustical Society of America, 28(2), 179–191.

    Article  ADS  MathSciNet  Google Scholar 

  • Boyles, C.A. and Biondo, A.C., 1993. Modeling acoustic propagation and scattering in littoral areas, Johns Hopkins APL Technical Digest, 14(2), 162–173.

    Google Scholar 

  • Breitzke, M. and Spieß, V., 1993. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments, Marine Geophysical Researches, 15(4), 297–321.

    Article  ADS  Google Scholar 

  • Buckingham, M.J., 1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments, The Journal of the Acoustical Society of America, 102(5), 2579–2596.

    Article  ADS  Google Scholar 

  • Buckingham, M.J., 2000. Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments, The Journal of the Acoustical Society of America, 108(6), 2796–2815.

    Article  ADS  Google Scholar 

  • Chizhik, D. and Tatersall, J.M., 1992. Application of Biot Theory to the Study of Acoustic Reflection from Sediments, Naval Undersea Warfare Center Detachment, New London.

    Google Scholar 

  • Danielson, R.E. and Sutherland, P.L., 1986. Porosity, in: Klute, A. (ed.), Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, second ed., American Society of Agronomy, Madison, pp. 443–461.

    Google Scholar 

  • Del Grosso, V.A. and Mader, C.W., 1972. Speed of sound in pure water, The Journal of the Acoustical Society of America, 52(5B), 1442–1446.

    Article  ADS  CAS  Google Scholar 

  • Dunlop, J.I., 1988. Propagation of acoustic waves in marine sediments, a review, Exploration Geophysics, 19(4), 513–535.

    Article  ADS  Google Scholar 

  • Folk, R.L., 1980. Petrology of Sedimentary Rocks, Hemphill Publishing Company, Austin.

    Google Scholar 

  • Gassmann, F., 1951. Uber die elastizitat poroser medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1–23.

    MathSciNet  Google Scholar 

  • Gorgas, T.J., Kim, G.Y., Park, S.C., Wilkens, R.H., Kim, D.C., Lee, G. H. and Seo, Y.K., 2003. Evidence for gassy sediments on the inner shelf of SE Korea from geoacoustic properties, Continental Shelf Research, 23(8), 821–834.

    Article  ADS  Google Scholar 

  • Hamilton, E.L., 1971. Prediction of in-situ acoustic and elastic properties of marine sediments, Geophysics, 36(2), 266–284.

    Article  ADS  Google Scholar 

  • Hamilton, E.L., 1980. Geoacoustic modeling of the sea floor, The Journal of the Acoustical Society of America, 68(5), 1313–1340.

    Article  ADS  Google Scholar 

  • Hamilton, E.L. and Bachman, R.T., 1982. Sound velocity and related properties of marine sediments, The Journal of the Acoustical Society of America, 72(6), 1891–1904.

    Article  ADS  Google Scholar 

  • Hampton, L., 1985. Acoustic properties of sediments: an update, Reviews of Geophysics, 23(1), 49–60.

    Article  ADS  Google Scholar 

  • Hampton, L.D., 1967. Acoustic properties of sediments, The Journal of the Acoustical Society of America, 42(4), 882–890.

    Article  ADS  Google Scholar 

  • Huang, Y.W., Yang, S.E., Li, Q., Yu, S.Q., Wang, F., Tang, D.J. and Thorsos, E.I., 2013. Laboratory measurements of sound speed and attenuation in sandy sediments, The Journal of the Acoustical Society of America, 134(S5), 4251.

    Article  ADS  Google Scholar 

  • Jackson, D.R. and Richardson, M.D., 2007a. High-Frequency Seafloor Acoustics, Springer, New York.

  • Jackson, D.R. and Richardson, M.D., 2007b. The nature of marine sediments, in: Jackson, D.R. and Richardson, M.D. (eds.), High-Frequency Seafloor Acoustics, Springer, New York, pp. 29–73.

    Chapter  Google Scholar 

  • Kimura, M., 2007. Study on the Biot-Stoll model for porous marine sediments, Acoustical Science and Technology, 28(4), 230–243.

    Article  Google Scholar 

  • Li, Y.H., Song, Y.C., Yu, F., Liu, W.G. and Zhao, J.F., 2011. Experimental study on mechanical properties of gas hydrate-bearing sediments using kaolin clay, China Ocean Engineering, 25(1), 113–122.

    Article  ADS  Google Scholar 

  • Mackenzie, K.V., 1981. Nine-term equation for sound speed in the oceans, The Journal of the Acoustical Society of America, 70(3), 807–812.

    Article  ADS  Google Scholar 

  • Maguer, A., Bovio, E., Fox, W.L.J. and Schmidt, H., 2000. In situ estimation of sediment sound speed and critical angle, The Journal of the Acoustical Society of America, 108(3), 987–996.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Medwin, H., 1975. Speed of sound in water: a simple equation for realistic parameters, The Journal of the Acoustical Society of America, 58(6), 1318–1319.

    Article  ADS  Google Scholar 

  • Richardson, M.D. and Briggs, K.B., 1993. On the Use of Acoustic Impedance Values to Determine Sediment Properties, Naval Research Laboratory, St. Louis.

    Google Scholar 

  • Robb, G.B.N., Best, A.I., Dix, J.K., Bull, J.M., Leighton, T.G. and White, P.R., 2006. The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments, The Journal of the Acoustical Society of America, 120(5), 2526–2537.

    Article  ADS  Google Scholar 

  • Schock, S.G., 2004. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data, IEEE Journal of Oceanic Engineering, 29(4), 1200–1217.

    Article  ADS  Google Scholar 

  • Shaikh, S., Huang, Y.W., Khan, R. and Siddiqui, A.A., 2022. Acoustic propagation in ocean sediments using biot model, 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, Islamabad, Pakistan, pp. 893–898.

    Chapter  Google Scholar 

  • Stoll, R.D., 1977. Acoustic waves in ocean sediments, Geophysics, 42(4), 715–725.

    Article  ADS  Google Scholar 

  • Stoll, R.D., 1989. Sediment Acoustics, Springe, Berlin.

    Google Scholar 

  • Udden, J.A., 1914. Mechanical composition of clastic sediments, GSA Bulletin, 25(1), 655–744.

    Article  Google Scholar 

  • Wang, F. and Huang, Y.W., 2018. Comparison of sound speed and attenuation measurements to the corrected effective density fluid model for gassy sediments, The Journal of the Acoustical Society of America, 144(3), EL203–EL208.

    Article  ADS  PubMed  Google Scholar 

  • Wang, J.Q., Hou, Z.Y., Li, G.B., Kan, G.M., Liu, B.H., Meng, X.M., Hua, Q.F. and Sun, L., 2022. High-frequency dependence of acoustic properties of three typical sediments in the South China Sea, Journal of Marine Science and Engineering, 10(9), 1295.

    Article  Google Scholar 

  • Wang, J.Q., Liu, B.H., Kan, G.M., Li, G.B., Zheng, J.W. and Meng, X. M., 2018. Frequency dependence of sound speed and attenuation in fine-grained sediments from 25 to 250 kHz based on a probe method, Ocean Engineering, 160, 45–53.

    Article  Google Scholar 

  • Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments, The Journal of Geology, 30(5), 377–392.

    Article  ADS  Google Scholar 

  • Williams, K.L., 2001. An effective density fluid model for acoustic propagation in sediments derived from Biot theory, The Journal of the Acoustical Society of America, 110(5), 2276–2281.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Williams, K.L., Jackson, D.R., Thorsos, E.I., Tang, D.J. and Schock, S. G., 2002. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media, IEEE Journal of Oceanic Engineering, 27(3), 413–428.

    Article  ADS  Google Scholar 

  • Yu, S.Q., Liu, B.H., Yu, K.B., Kan, G.M. and Yang, Z.G., 2017. Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5–3 kHz and 90–170 kHz, China Ocean Engineering, 31(1), 103–113.

    Article  ADS  Google Scholar 

  • Zou, D.P., Yan, P. and Zhou, J.P., 2014. Research on acoustic properties of seafloor sediment with temperature and pressure controlled, Marine Georesources & Geotechnology, 32(2), 93–105.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Dr. Tariq Mehmood, Dr. Ibrahim Zia, Dr. Waqar Ahmed, and other esteemed researchers from the National Institute of Oceanography (NIO), Pakistan, for their substantial efforts in the acquisition of novel sediment samples and the assessment of physical sediment properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-wang Huang.

Ethics declarations

The authors declare no competing interests.

Additional information

Foundation item: This research was financially supported by the National Natural Science Foundation of China (Grant No. 12074088).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, S., Huang, Yw., Zhang, Zc. et al. Fine Sand and Clay Sediment Acoustic Properties of the Novel Sediment Sample from the Arabian Sea: Experimental Investigations and Biot–Stoll Model Validation. China Ocean Eng 38, 169–180 (2024). https://doi.org/10.1007/s13344-024-0014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-024-0014-1

Key words

Navigation