Skip to main content
Log in

Wake Effects on A Hybrid Semi-Submersible Floating Wind Farm with Multiple Hub Heights

  • Original Paper
  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

Wind farms generally consist of a single turbine installed with the same hub height. As the scale of turbines increases, wake interference between turbines becomes increasingly significant, especially for floating wind turbines (FWT). Some researchers find that wind farms with multiple hub heights could increase the annual energy production (AEP), while previous studies also indicate that wake meandering could increase fatigue loading. This study investigates the wake interaction within a hybrid floating wind farm with multiple hub heights. In this study, FAST.Farm is employed to simulate a hybrid wind farm which consists of four semi-submersible FWTs (5MW and 15MW) with two different hub heights. Three typical wind speeds (below-rated, rated, and over-rated) are considered in this paper to investigate the wake meandering effects on the dynamics of two FWTs. Damage equivalent loads (DEL) of the turbine critical components are computed and analyzed for several arrangements determined by the different spacing of the four turbines. The result shows that the dynamic wake meandering significantly affects downstream turbines’ global loadings and load effects. Differences in DEL show that blade-root flapwise bending moments and mooring fairlead tensions are sensitive to the spacing of the turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abdulrahman, M. and Wood, D., 2017. Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation, Renewable Energy, 102, 267–278.

    Article  Google Scholar 

  • Ahmadi, M. H. B., 2019. Influence of upstream turbulence on the wake characteristics of a tidal stream turbine, Renewable Energy, 132, 989–997.

    Article  Google Scholar 

  • Alam, M.M., Rehman, S., Meyer, J.P. and Al-Hadhrami, L.M., 2011. Review of 600–2500 kW sized wind turbines and optimization of hub height for maximum wind energy yield realization, Renewable and Sustainable Energy Reviews, 15(8), 3839–3849.

    Article  Google Scholar 

  • Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M. and Barter, G., 2020. Definition of the UMaine Voltur-nUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Book  Google Scholar 

  • Asmuth, H., Diaz, G.P.N., Madsen, H.A., Branlard, E., Forsting, A.R. M., Nilsson, K., Jonkman, J. and Ivanell, S., 2022. Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements, Renewable Energy, 191, 868–887.

    Article  Google Scholar 

  • Barthelmie, R.J., Frandsen, S.T., Nielsen, M.N., Pryor, S.C., Rethore, P.E. and Jørgensen, H.E., 2007. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm, Wind Energy, 10(6), 517–528.

    Article  Google Scholar 

  • Castellani, F. and Vignaroli, A., 2013. An application of the actuator disc model for wind turbine wakes calculations, Applied Energy, 101, 432–440.

    Article  Google Scholar 

  • Chen, K., Song, M.X., Zhang, X. and Wang, S.F., 2016. Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm, Renewable Energy, 96, 676–686.

    Article  Google Scholar 

  • Chen, Y., Li, H., Jin, K. and Song, Q., 2013. Wind farm layout optimization using genetic algorithm with different hub height wind turbines, Energy Conversion and Management, 70, 56–65.

    Article  Google Scholar 

  • Clark, C.E., Barter, G., Shaler, K. and DuPont, B., 2022. Reliability-based layout optimization in offshore wind energy systems, Wind Energy, 25(1), 125–148.

    Article  Google Scholar 

  • Dahlberg, J.Å., Poppen, M. and Thor, S.E., 1992. Load/fatigue effects on a wind turbine generator in a wind farm, Journal of Wind Engineering and Industrial Aerodynamics, 39(1–3), 199–209.

    Article  Google Scholar 

  • Dimitrov, N., Natarajan, A. and Kelly, M., 2015. Model of wind shear conditional on turbulence and its impact on wind turbine loads, Wind Energy, 18(11), 1917–1931.

    Article  Google Scholar 

  • Doubrawa, P., Annoni, J., Jonkman, J. and Ghate, A., 2018. Optimization-based calibration of FAST.Farm parameters against SOWFA, Presented at the American Institute of Aeronautics and Astronautics SciTech Forum 2018, Kissimmee, Florida.

  • Fleming, P.A., Gebraad, P.M.O., Lee, S., van Wingerden, J.W., Johnson, K., Churchfield, M., Michalakes, J., Spalart, P. and Moriarty, P., 2014. Evaluating techniques for redirecting turbine wakes using SOWFA, Renewable Energy, 70, 211–218.

    Article  Google Scholar 

  • Fontanella, A., Zasso, A. and Belloli, M., 2022. Wind tunnel investigation of the wake-flow response for a floating turbine subjected to surge motion, Journal of Physics: Conference Series, 2265(4), 042023.

    Google Scholar 

  • Hasager, C.B., Rasmussen, L., Peña, A., Jensen, L.E., and Réthoré, P. E., 2013. Wind farm wake: The Horns Rev photo case, Energies, 6(2), 696–716.

    Article  Google Scholar 

  • Hanssen-Bauer, Ø.W., de Vaal, J.B., Tutkun, M., Stenbro, R., Doubrawa, P., Jonkman, J., Aagaard Madsen, H., Larsen, G.C., Asmuth, H. and Ivanell, S., 2021. Comparison of wake flow, power and load measurements from three mid-fidelity wake models based on the DWM approach, Wind Energy Science Conference 2021, Hannover, Lower Saxony, Germany.

  • Holtslag, M.C., Bierbooms, W.A.A.M. and Van Bussel, G.J.W., 2016. Wind turbine fatigue loads as a function of atmospheric conditions offshore, Wind Energy, 19(10), 1917–1932.

    Article  Google Scholar 

  • International Electrotechnical Commission, 2019a. WindEnergy Generation Systems—Part 1: Design Requirements, IEC 61400-1:2019, IEC, Geneva, Switzerland.

    Google Scholar 

  • International Electrotechnical Commission, 2019b. Wind Energy Generation Systems—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines, IEC 61400-3-1:2019, IEC, Geneva, Switzerland.

    Google Scholar 

  • Jiang, Z.Y., Yttervik, R., Gao, Z. and Sandvik, P.C., 2020. Design, modelling, and analysis of a large floating dock for spar floating wind turbine installation, Marine Structures, 72, 102781.

    Article  Google Scholar 

  • Jonkman, B.J., 2009. TurbSim User’s Guide: Version 1.50, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Book  Google Scholar 

  • Jonkman, J., Doubrawa, P., Hamilton, N., Annoni, J. and Fleming, P., 2018. Validation of FAST.Farm against large-eddy simulations, Journal of Physics: Conference Series, 1037(6), 062005.

    Google Scholar 

  • Jonkman, J.M., Annoni, J., Hayman, G., Jonkman, B. and Purkayastha, A., 2017. Development of FAST.Farm: A new multi-physics engineering tool for wind-farm design and analysis, 35th Wind Energy Symposium, Grapevine, Texas.

  • Kretschmer, M., Jonkman, J., Pettas, V. and Cheng, P.W., 2021. FAST. Farm load validation for single wake situations at alpha ventus, Wind Energy Science, 6, 1247–1262.

    Article  Google Scholar 

  • Larsen, T.J. and Hansen, A.M., 2007. How 2 HAWC2, the User’s Manual, Risø National Laboratory. Roskilde, Denmark.

    Google Scholar 

  • Liu, Q.S., Miao, W.P., Yue, M.N., Li, C., Wang, B. and Ding, Q.W., 2021. Dynamic response of offshore wind turbine on 3×3 barge array floating platform under extreme sea conditions, China Ocean Engineering, 35(2), 186–200.

    Article  Google Scholar 

  • Liu, X.H., Li, Z.B., Yang, X.L., Xu, D., Kang, S. and Khosronejad, A., 2022. Large-eddy simulation of wakes of waked wind turbines, Energies, 15(8), 2899.

    Article  Google Scholar 

  • Liu, Z.Q., Li, Q.M., Ishihara, T. and Peng, J., 2020. Numerical simulations of fatigue loads on wind turbines operating in wakes, Wind Energy, 23(5), 1301–1316.

    Article  Google Scholar 

  • Mahfouz, M. Y., Molins, C., Trubat, P., Hernández, S., Vigara, F., Pegalajar-Jurado, A., Bredmose, H. and Salari, M., 2021. Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves, Wind Energy Science, 6(3), 867–883.

    Article  Google Scholar 

  • Mei, X. and Xiong, M., 2021. Effects of second-order hydrodynamics on the dynamic responses and fatigue damage of a 15 MW floating offshore wind turbine, Journal of Marine Science and Engineering, 9(11), 1232.

    Article  Google Scholar 

  • Nebenführ, B. and Davidson, L., 2017. Prediction of wind-turbine fatigue loads in forest regions based on turbulent LES inflow fields, Wind Energy, 20(6), 1003–1015.

    Article  Google Scholar 

  • Pettas, V., Kretschmer, M., Clifton, A. and Cheng, P.W., 2021. On the effects of inter-farm interactions at the offshore wind farm Alpha Ventus, Wind Energy Science, 6(6), 1455–1472.

    Article  Google Scholar 

  • Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A. and Luan, C., 2014. Definition of the Semisubmersible Floating System for Phase II of OC4, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Book  Google Scholar 

  • Sedaghatizadeh, N., Arjomandi, M., Kelso, R., Cazzolato, B. and Ghayesh, M.H., 2018. Modelling of wind turbine wake using large eddy simulation, Renewable Energy, 115, 1166–1176.

    Article  Google Scholar 

  • Shaler, K., Debnath, M. and Jonkman, J., 2020. Validation of FAST. Farm against full-scale turbine SCADA data for a small wind farm, Journal of Physics: Conference Series, 1618(6), 062061.

    Google Scholar 

  • Shaler, K., Jonkman, J., Doubrawa Moreira, P. and Hamilton, N., 2019. FAST.Farm Response to Varying Wind Inflow Techniques: Preprint, National Renewable Energy Lab. (NREL), Golden, CO (United States).

    Google Scholar 

  • Slot, R.M.M., Sørensen, J.D., Svenningsen, L., Moser, W. and Thøgersen, M.L., 2019. Effective turbulence and its implications in wind turbine fatigue assessment, Wind Energy, 22(12), 1699–1715.

    Article  Google Scholar 

  • Sturge, D., Sobotta, D., Howell, R., While, A. and Lou, J., 2015. A hybrid actuator disc—Full rotor CFD methodology for modelling the effects of wind turbine wake interactions on performance, Renewable Energy, 80, 525–537.

    Article  Google Scholar 

  • Sun, H.Y. and Yang, H.X., 2018. Study on an innovative three-dimensional wind turbine wake model, Applied Energy, 226, 483–493.

    Article  Google Scholar 

  • Thomsen, K. and Sørensen, P., 1999. Fatigue loads for wind turbines operating in wakes, Journal of Wind Engineering and Industrial Aerodynamics, 80(1–2), 121–136.

    Article  Google Scholar 

  • Vasel-Be-Hagh, A. and Archer, C.L., 2017. Wind farm hub height optimization, Applied Energy, 195, 905–921.

    Article  Google Scholar 

  • Wang, L.Y., Cholette, M.E., Fu, Y.X., Yuan, J.P., Zhou, Y.K. and Tan, A.C.C., 2018b. Combined optimization of continuous wind turbine placement and variable hub height, Journal of Wind Engineering and Industrial Aerodynamics, 180, 136–147.

    Article  Google Scholar 

  • Wang, L.Y., Cholette, M.E., Zhou, Y.K., Yuan, J.P., Tan, A.C.C. and Gu, Y.T., 2018a. Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization, Renewable Energy, 126, 819–829.

    Article  Google Scholar 

  • Wang, Y.G., 2016. Prediction of short-term distributions of load extremes of offshore wind turbines, China Ocean Engineering, 30(6), 851–866.

    Article  Google Scholar 

  • Wise, A.S. and Bachynski, E.E., 2020. Wake meandering effects on floating wind turbines, Wind Energy, 23(5), 1266–1285.

    Article  Google Scholar 

  • Xu, X.S., Gu, J., Du, L., Yang, P. and Hu, F., 2022c. Wake effects on dynamics of two semi-submersible wind turbines with varying hub heights, The 32nd International Ocean and Polar Engineering Conference, Paper Number: ISOPE-I-22-041.

  • Xu, X.S., Gaidai, O., Karpa, O., Wang, J.L., Ye, R.C. and Cheng, Y., 2021. Wind farm support vessel extreme roll assessment while docking in the Bohai Sea, China Ocean Engineering, 35(2), 308–316.

    Article  Google Scholar 

  • Xu, X.S., Gaidai, O., Naess, A. and Sahoo, P., 2020. Extreme loads analysis of a site-specific semi-submersible type wind turbine, Ships and Offshore Structures, 15(S1), S46–S54.

    Article  Google Scholar 

  • Xu, X.S., Wang, F., Gaidai, O., Naess, A., Xing, Y.H. and Wang, J.L., 2022a. Bivariate statistics of floating offshore wind turbine dynamic response under operational conditions, Ocean Engineering, 257, 111657.

    Article  Google Scholar 

  • Xu, X.S., Xing, Y.H., Gaidai, O., Wang, K.L., Patel, K.S., Dou, P. and Zhang, Z.Y., 2022b. A novel multi-dimensional reliability approach for floating wind turbines under power production conditions, Frontiers in Marine Science, 9, 970081.

    Article  Google Scholar 

  • Yang, H., Chen, J. and Pang, X.P., 2018. Wind turbine optimization for minimum cost of energy in low wind speed areas considering blade length and hub height, Applied Sciences, 8(7), 1202.

    Article  Google Scholar 

  • Yang, Y., Bashir, M., Wang, J., Yu, J. and Li, C., 2020. Performance evaluation of an integrated floating energy system based on coupled analysis, Energy Conversion and Management, 223, 113308.

    Article  Google Scholar 

  • Zhao, Z.X., Shi, W., Wang, W.H., Qi, S.W.J. and Li, X., 2021. Dynamic analysis of a novel semi-submersible platform for a 10 MW wind turbine in intermediate water depth, Ocean Engineering, 237, 109688.

    Article  Google Scholar 

  • Zwick, D. and Muskulus, M., 2016. Simplified fatigue load assessment in offshore wind turbine structural analysis, Wind Energy, 19(2), 265–278.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51909109 and 52101314) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20190967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-jie Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Xs., Gu, Jy., Ling, Hj. et al. Wake Effects on A Hybrid Semi-Submersible Floating Wind Farm with Multiple Hub Heights. China Ocean Eng 37, 101–114 (2023). https://doi.org/10.1007/s13344-023-0009-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-023-0009-3

Key words

Navigation