Skip to main content

Flapwise Bending Vibration Analysis of Rotating Tapered Rayleigh Beams for the Application of Offshore Wind Turbine Blades

Abstract

The flapwise bending vibrational equations of tapered Rayleigh beam are derived based on Hamilton’s principle. The corresponding vibrational characteristics of rotating tapered Rayleigh beams are investigated via variational iteration method (VIM). Natural frequencies and corresponding mode shapes are examined under various rotation speed, taper ratio and slenderness ratio focusing on two types of tapered beam. The convergence of VIM is examined as part of the paper. Validation of VIM solution is made by referring to results available in other literature and corresponding results show that VIM is capable of yielding precise results in a very efficient way.

This is a preview of subscription content, access via your institution.

References

  1. Banerjee, J.R., 2000. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method, Journal of Sound and Vibration, 233(5), 857–875.

    Article  Google Scholar 

  2. Banerjee, J.R., 2001. Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams, Journal of Sound and Vibration, 247(1), 97–115.

    Article  Google Scholar 

  3. Banerjee, J.R. and Jackson, D.R., 2013. Free vibration of a rotating tapered Rayleigh beam: a dynamic stiffness method of solution, Computers & Structures, 124, 11–20.

    Article  Google Scholar 

  4. Banerjee, J.R. and Sobey, A.J., 2002. Energy expressions for rotating Tapered Timoshenko beams, Journal of Sound and Vibration, 254(4), 818–822.

    Article  Google Scholar 

  5. Bazoune, A. and Khulief, Y.A., 1992. A finite beam element for vibration analysis of rotating tapered Timoshenko beams, Journal of Sound and Vibration, 156(1), 141–164.

    Article  Google Scholar 

  6. Chen, Y.F., Zhang, J. and Zhang, H., 2016. Flapwise bending vibration of rotating tapered beams using variational iteration method, Journal of Vibration and Control, 22(15), 3384–3395.

    MathSciNet  Article  Google Scholar 

  7. Chen, Y.F., Zhang, J. and Zhang, H., 2017. Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method, Journal of Vibration and Control, 23(2), 220–234.

    MathSciNet  Article  Google Scholar 

  8. Du, H., Lim, M.K. and Liew, K.M., 1994. A power series solution for vibration of a rotating Timoshenko beam, Journal of Sound and Vibration, 175(4), 505–523.

    Article  Google Scholar 

  9. El-Sayed, T.A. and El-Mongy, H.H., 2018. Application of variational iteration method to free vibration analysis of a tapered beam mounted on two-degree of freedom subsystems, Applied Mathematical Modelling, 58, 349–364.

    MathSciNet  Article  Google Scholar 

  10. Eroglu, U., 2016. Large deflection analysis of planar curved beams made of functionally graded materials using variational iterational method, Composite Structures, 136, 204–216.

    Article  Google Scholar 

  11. Gere, J.M. and Timoshenko, S.P., 1997. Mechanics of Materials, Fifth ed., PWS Publishing Company, Boston.

    Google Scholar 

  12. He, J.H., 2007. Variational iteration method-Some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207(1), 3–17.

    MathSciNet  Article  Google Scholar 

  13. He, J.H., 2012. Notes on the optimal variational iteration method, Applied Mathematics Letters, 25(10), 1579–1581.

    MathSciNet  Article  Google Scholar 

  14. Hoa, S.V., 1979. Vibration of a rotating beam with tip mass, Journal of Sound and Vibration, 67(3), 369–381.

    Article  Google Scholar 

  15. Hodges, D.H. and Rutkowski, M.J., 1981. Free-vibration analysis of rotating beams by a variable-order finite-element method, AIAA Journal, 19(11), 1459–1466.

    Article  Google Scholar 

  16. Huang, C.H., Lin, W.Y. and Hsiao, K.M., 2010. Free vibration analysis of rotating Euler beams at high angular velocity, Computers & Structures, 88(17–18), 991–1001.

    Article  Google Scholar 

  17. Huang, Y., Yang, L.E. and Luo, Q.Z., 2013. Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section, Composites Part B: Engineering, 45(1), 1493–1498.

    Article  Google Scholar 

  18. Lee, J.W., 2020. Free vibration analysis of tapered Rayleigh beams using the transfer matrix method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 612.

    Article  Google Scholar 

  19. Lee, S.Y. and Kuo, Y.H., 1993. Bending frequency of a rotating Timoshenko beam with general elastically restrained root, Journal of Sound and Vibration, 162(2), 243–250.

    Article  Google Scholar 

  20. Lee, J.W. and Lee, J.Y., 2018. An exact transfer matrix expression for bending vibration analysis of a rotating tapered beam, Applied Mathematical Modelling, 53, 167–188.

    MathSciNet  Article  Google Scholar 

  21. Lee, J.W. and Lee, J.Y., 2020. Free vibration analysis of a rotating double-tapered beam using the transfer matrix method, Journal of Mechanical Science and Technology, 34(7), 2731–2744.

    Article  Google Scholar 

  22. Lee, S.Y. and Lin, S.M., 1994. Bending vibrations of rotating nonuniform Timoshenko beams with an elastically restrained root, Journal of Applied Mechanics, 61(4), 949–955.

    Article  Google Scholar 

  23. Li, X.F., Tang, A.Y. and Xi, L.Y., 2013. Vibration of a Rayleigh cantilever beam with axial force and tip mass, Journal of Constructional Steel Research, 80, 15–22.

    Article  Google Scholar 

  24. Li, Y.D. and Yang, Y.R., 2017. Vibration analysis of conveying fluid pipe via He’s variational iteration method, Applied Mathematical Modelling, 43, 409–420.

    MathSciNet  Article  Google Scholar 

  25. Lin, S.C. and Hsiao, K.M., 2001. Vibration analysis of a rotating Timoshenko beam, Journal of Sound and Vibration, 240(2), 303–322.

    Article  Google Scholar 

  26. Liu, W.H. and Liu, D.S., 1989. Natural frequencies of a restrained Timoshenko beam with a tip body at its free end, Journal of Sound and Vibration, 128(1), 167–173.

    Article  Google Scholar 

  27. Martin, O., 2016. A modified variational iteration method for the analysis of viscoelastic beams, Applied Mathematical Modelling, 40(17–18), 7988–7995.

    MathSciNet  Article  Google Scholar 

  28. Mei, C., 2006. Differential transformation approach for free vibration analysis of a centrifugally stiffened Timoshenko beam, Journal of Vibration and Acoustics, 128(2), 170–175.

    Article  Google Scholar 

  29. Mei, C., 2008. Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam, Computers & Structures, 86(11–12), 1280–1284.

    Article  Google Scholar 

  30. Ozgumus, O.O. and Kaya, M.O., 2006. Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method, Meccanica, 41(6), 661–670.

    Article  Google Scholar 

  31. Ozgumus, O.O. and Kaya, M.O., 2008. Flapwise bending vibration analysis of a rotating double-tapered Timoshenko beam, Archive of Applied Mechanics, 78(5), 379–392.

    Article  Google Scholar 

  32. Rajasekaran, S., 2013. Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods, Applied Mathematical Modelling, 37(6), 4440–4463.

    MathSciNet  Article  Google Scholar 

  33. Tang, A.Y., Li, X.F. and Wu, J.X., 2015. Flapwise bending vibration of rotating tapered Rayleigh cantilever beams, Journal of Constructional Steel Research, 112, 1–9.

    Article  Google Scholar 

  34. Tian, J.J., Su, J.P., Zhou, K. and Jia, H.X., 2018. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects, Journal of Sound and Vibration, 426, 258–277.

    Article  Google Scholar 

  35. Wright, A.D., Smith, C.E., Thresher, R.W. and Wang, J.L.C., 1982. Vibration modes of centrifugally stiffened beam, Journal of Applied Mechanics, 49(1), 197–202.

    Article  Google Scholar 

  36. Xi, L.Y., Li, X.F. and Tang, G.J., 2013. Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers, International Journal of Mechanical Sciences, 66, 233–238.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yan-fei Chen.

Additional information

Foundation item

The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51779265 and 52171285), Open Project Program of State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ19119), Science Foundation of China University of Petroleum, Beijing (Grant No. 2462020YXZZ045), Open Project Program of Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deepwater Oil & Gas Development (Grant No. BIPT2018002), Special Funding for Promoting Economic Development in Guangdong Province (Grant No. GDOE[2019]A39), and Opening fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety (Grant No. HESS-1411).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Yf., Zang, Zp., Dong, Sh. et al. Flapwise Bending Vibration Analysis of Rotating Tapered Rayleigh Beams for the Application of Offshore Wind Turbine Blades. China Ocean Eng 35, 544–553 (2021). https://doi.org/10.1007/s13344-021-0049-5

Download citation

Key words

  • tapered Rayleigh beam
  • flapwise bending vibration
  • variational iteration
  • natural frequencies
  • convergence