China Ocean Engineering

, Volume 31, Issue 2, pp 238–247 | Cite as

A corrected solid boundary treatment method for Smoothed Particle Hydrodynamics

  • Yun-sai Chen
  • Xing Zheng
  • Shan-qin Jin
  • Wen-yang Duan
Technical Notes


Smoothed Particle Hydrodynamics method (SPH) has a good adaptability for simulating of free surface flow problems. However, there are some shortcomings of SPH which are still in open discussion. This paper presents a corrected solid boundary handling method for weakly compressible SPH. This improved method is very helpful for numerical stability and pressure distribution. Compared with other solid boundary handling methods, this corrected method is simpler for virtual ghost particle interpolation and the ghost particle evaluation relationship is clearer. Several numerical tests are given, like dam breaking, solitary wave impact and sloshing tank waves. The results show that the corrected solid boundary processing method can recover the spurious oscillations of pressure distribution when simulating the problems with complex geometry boundary.

Key words

SPH particle arrangement boundary treatment solitary wave impact sloshing wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouscasse, B., Colagrossi, A., Marrone, S. and Antuono, M., 2013. Nonlinear water wave interaction with floating bodies in SPH, J. Fluid. Struct., 42, 112–129.CrossRefGoogle Scholar
  2. Buchner, B., 2002. Green Water on Ship-Type Offshore Structures, Ph. D. Thesis, Delft University of Technology, TU Delft.Google Scholar
  3. Colagrossi, A., Bouscasse, B., Antuono, M. and Marrone, S., 2012. Particle packing algorithm for SPH schemes, Comput. Phys. Commun., 183(8), 1641–1653.MathSciNetCrossRefMATHGoogle Scholar
  4. Faltinsen, O.M., 1976. A numerical non-linear method for sloshing in tanks with two dimensional flow, J. Ship Res., 18(4), 224–241.Google Scholar
  5. Gingold, R.A. and Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, 181(3), 375–389.CrossRefMATHGoogle Scholar
  6. Kishev, Z.R., Hu, C.H. and Kashiwagi, M., 2006. Numerical simulation of violent sloshing by a CIP-based method, J. Mar. Sci. Technol., 11, 111–122.CrossRefGoogle Scholar
  7. Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D. and Stansby, P., 2008. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J. Comput. Phys., 227, 8417–8436.MathSciNetCrossRefMATHGoogle Scholar
  8. Liang, D.F., Thusyanthan, N.M., Madabhushi, S.P.G. and Tang, H.W., 2010. Modelling solitary waves and its impact on coastal houses with SPH method, China Ocean Eng., 24(2), 353–368.Google Scholar
  9. Liu, G.R. and Liu, M.B., 2003. Smoothed Particle Hydrodynamics - A Mesh Free Particle Method, World Scientific Press.CrossRefMATHGoogle Scholar
  10. Liu, M.B. and Liu, G.R., 2010. Smoothed particle hydrodynamics (SPH): An overview and recent developments, Archives of Computational Methods in Engineering, 17(1), 25–76.MathSciNetCrossRefMATHGoogle Scholar
  11. Liu, M.B., Liu, G.R., Lam, K.Y. and Zong, Z., 2003. Smoothed particle hydrodynamics for numerical simulation of underwater explosion, Comput. Mech., 30(2), 106–118.CrossRefMATHGoogle Scholar
  12. Lucy, L.B., 1977. A numerical approach to the testing of the fusion process, Astron. J., 88, 1013–1024.CrossRefGoogle Scholar
  13. Ma, Q.W. and Zhou, J.T., 2009. MLPG_R method for numerical simulation of 2D breaking waves, CMES-Computer Modeling in Engineering & Sciences, 43(3), 277–304.MathSciNetMATHGoogle Scholar
  14. Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touze, D. and Graziani, G., 2011. δ-SPH model for simulating violent impact flows, Comput. Method. Appl. M., 200(13), 1526–1542.MathSciNetCrossRefMATHGoogle Scholar
  15. Maxworthy, T., 1976. Experiments on collisions between solitary waves, J. Fluid Mech., 76(1), 177–186.CrossRefGoogle Scholar
  16. Monaghan, J.J., 1994. Simulation free surface flows with SPH, J. Comput. Phys., 110(4), 399–406.CrossRefMATHGoogle Scholar
  17. Morris, J.P., Fox, P.J. and Zhu, Y., 1997. Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 214–226.CrossRefMATHGoogle Scholar
  18. Randles, P.W. and Libersky, L.D., 1996. Smoothed particle hydrodynamics: Some recent improvements and applications, Comput. Method. Appl. M., 139(1), 375–408.MathSciNetCrossRefMATHGoogle Scholar
  19. Shao, S. and Lo, E.Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Adv. Water Resour., 26(7), 787–800.CrossRefGoogle Scholar
  20. Su, C.H. and Mirie, R.M., 1980. On head-on collisions between two solitary waves, J. Fluid Mech., 98(3), 509–525.MathSciNetCrossRefMATHGoogle Scholar
  21. Zheng, X., Ma, Q.W. and Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation, J. Comput. Phys., 276, 291–314.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yun-sai Chen
    • 1
    • 2
  • Xing Zheng
    • 1
  • Shan-qin Jin
    • 1
  • Wen-yang Duan
    • 1
  1. 1.College of Shipbuilding EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Department of TechnologyNational Deep Sea CenterQingdaoChina

Personalised recommendations