China Ocean Engineering

, Volume 30, Issue 5, pp 651–670 | Cite as

Development and extension of an aggregated scale model: Part 2 — Extensions to ASMITA

  • Ian Townend
  • Zheng Bing Wang
  • Marcel Stive
  • Zeng Zhou



Whilst much attention has been given to models that describe wave, tide and sediment transport processes in sufficient detail to determine the local changes in bed level over a relatively detailed representation of the bathymetry, far less attention has been given to models that consider the problem at a much larger scale (e.g. that of geomorphological elements such as a tidal flat and tidal channel). Such aggregated or lumped models tend not to represent the processes in detail but rather capture the behaviour at the scale of interest. One such model developed using the concept of an equilibrium concentration is the Aggregated Scale Morphological Interaction between Tidal basin and Adjacent coast (ASMITA). In a companion paper (Part 1), we detail the original model and provide some new insights into the concepts of equilibrium, and horizontal and vertical exchange that are key components of this modelling approach. In this paper, we summarise a range of developments that have been undertaken to extend the original model concept, to illustrate the flexibility and power of the conceptual framework. However, adding detail progressively moves the model in the direction of the more detailed process-based models and we give some consideration to the boundary between the two.


  • A range of extensions to the original ASMITA model are presented that allow additional processes or features to be represented in the model.

  • The merits of ever increasing complexity within an aggregated model, versus the use of a suitable local-scale and more detailed process-based model are discussed.

Key words

estuary tidal inlet morphology tides waves sediment transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dal Monte, L. and Di Silvio, G., 2004. Sediment concentration in tidal lagoons. A contribution to long-term morphological modelling, J. Marine Syst., 51(1–4): 243–255.CrossRefGoogle Scholar
  2. de Vriend, H. J., Bakker, W. T. and Bilse, D. P., 1994. A morphological behaviour model for the outer delta of mixed-energy tidal inlets, Coast. Eng., 23(3–4): 305–327.CrossRefGoogle Scholar
  3. Friedrichs, C. T., Armbrust, B. D. and de Swart, H. E., 1998. Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries, in: J. Dronkers, M. B. A. M. Scheffers (Eds.), Physics of Estuaries and Coastal Seas, Balkema, Rotterdam, pp. 315–327.Google Scholar
  4. Hicks, D. M. and Hume, T. M., 1996. Morphology and size of ebb tidal deltas at natural inlets on open-sea and pocked-bay coasts, North Island, New Zealand, J. Coastal Res., 12(1): 47–63.Google Scholar
  5. Jeuken, M. C. J. L., Wang, Z. B., Keiller, D., Townend, I. H. and Liek, G. A., 2003. Morphological response of estuaries to nodal tide variation, Proceedings of the International Conference on Estuaries & Coasts (ICEC-2003), Hangzhou, China, pp. 167–173.Google Scholar
  6. Jonas, P. J. and Millward, G. E., 2010. Metals and nutrients in the Severn Estuary and Bristol Channel: Contemporary inputs and distributions, Mar. Pollut. Bull., 61(1–3): 52–67.CrossRefGoogle Scholar
  7. Knaapen, M. A. F., Townend, I. H., Rossington, S. K., Fletcher, C. A. and Spearman, J., 2009. The dynamics of intertidal mudflat and salt marshes within estuaries, The Environmentalist, 84, 12–15.Google Scholar
  8. Kragtwijk, N. G., Zitman, T. J., Stive, M. J. F. and Wang, Z. B., 2004. Morphological response of tidal basins to human interventions, Coast. Eng., 51(3): 207–221.CrossRefGoogle Scholar
  9. Kraus, N. C., 2000. Reservoir model of ebb-tidal shoal evolution and sand bypassing, J. Waterw. Port Coast. Ocean Eng., ASCE, 126(6): 303–313.MathSciNetCrossRefGoogle Scholar
  10. Kraus, N. C., 2002. Resevoir model for calculating natural and bypassing and change in volume of ebb-tidal shoals, part 1: Description, ERDC/CHL CHETN-IV-39, Vicksberg.Google Scholar
  11. Krone, R. B., 1987. A method for simulating historic marsh elevations, in: N. C. Kraus (Ed.), Coastal Sediments'87, ASCE, pp. 316–323.Google Scholar
  12. Larson, M., Kraus, N. C. and Hanson, H., 2002. Simulation of regional longshore sediment transport and coastal evolution–The Cascade model, Proceedings of the 28th International Conference on Coastal Engineering, Cardiff, Wales, UK, pp. 2612–2624.Google Scholar
  13. Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. and Rinaldo, A., 2007. Biologically-controlled multiple equilibria for tidal landforms and the fate of Venice lagoon, Geophys. Res. Lett., 34(L11402): 1–5.Google Scholar
  14. Mark, A., 2007. Analysing the Predictive Nature of Ebb Tidal Delta Evolution Within the Model ASMITA: An Eastern Solent Case Study, University of Southampton, 1-125 pp.Google Scholar
  15. Morris, J. T., 2006. Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone, Estuarine, Coastal and Shelf Science, 69(3–4): 395–402.CrossRefGoogle Scholar
  16. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. and Cahoon, D. R., 2002. Responses of coastal wetlands to rising sea level, Ecology, 83(10): 2869–2877.CrossRefGoogle Scholar
  17. Mudd, S. M., Fagherazzi, S., Morris, J. T. and Furbish, D. J., 2004. Flow, sedimentation and biomass production of a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution, in: S. Fagherazzi, M. Marani, L. K. Blum (Eds.), The Ecogeomorphology of Tidal Marshes, Estuarine and Coastal Studies Series, American Geophysical Union, Washington DC, pp. 165–188.Google Scholar
  18. Scott, C. R., Armstrong, S., Townend, I. H., Dixon, M. and Everard, M., 2011. Lessons learned from 20 years of managed realignment and regulated tidal exchange in the UK, ICE Coastal Management 2011, pp. 1–10.Google Scholar
  19. Scully, M. E. and Friedrichs, C. T., 2007. Sediment pumping by tidal asymmetry in a partially mixed estuary, J. Geophys. Res.-Oceans, 112(C7): 623–642.CrossRefGoogle Scholar
  20. Townend, I. H., 2005. An examination of empirical stability relationships for UK estuaries, J. Coastal Res., 21(5): 1042–1053.CrossRefGoogle Scholar
  21. Townend, I. H., 2008. Hypsometry of estuaries, creek and breached sea wall sites, Proceedings of the Institution of Civil Engineers-Maritime Engineering, 161(1): 23–32.CrossRefGoogle Scholar
  22. Townend, I. H., 2010. An exploration of equilibrium in Venice Lagoon using an idealised form model, Cont. Shelf Res., 30(8): 984–999.CrossRefGoogle Scholar
  23. Townend, I. H., Rossington, S. K., Knaapen, M. A. F. and Richardson, S., 2010a. The dynamics of intertidal mudflat and saltmarshes within estuaries, Proceedings of the 32nd International Conference on Coastal Engineering, Shanghai, China, pp. 1–10.Google Scholar
  24. Townend, I. H., Scott, C. R. and Dixon, M., 2010b. Managed realignment: A coastal flood management strategy, in: G. Pender, C. R. Thorne, I. Cluckie, H. Faulkner (Eds.), Flood Risk Science and Management, Blackwell Publishing Ltd, Oxford, pp. 60–86.CrossRefGoogle Scholar
  25. Townend, I. H., Wang, Z. B., Spearman, J. and Wright, A. D., 2008. Volume and surface area changes in estuaries and tidal inlets, Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, pp. 4495–4507.Google Scholar
  26. Townend, I. H., Wang, Z. B., Stive, M. J. F. and Zhou, Z., 2016. Development and extension of an aggregated scale model: Part 1–Background to ASMITA, China Ocean Eng., 30(4): 483–504.CrossRefGoogle Scholar
  27. van Goor, M. A., Zitman, T. J., Wang, Z. B. and Stive, M. J. F., 2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets, Mar. Geol., 202(3–4): 211–227.CrossRefGoogle Scholar
  28. Wang, Z. B., de Vriend, H. J., Stive, M. J. F. and Townend, I. H., 2008. On the parameter setting of semi-empirical long-term morphological models for estuaries and tidal lagoons, in: C. M. Dohmen-Janssen, S. J. M. H. Hulscher (Eds.), River, Coastal and Estuarine Morphodynamics, Taylor & Francis, pp. 103–111.Google Scholar
  29. Wang, Z. B., Jeuken, M. C. J. L., Gerritsen, H., de Vriend, H. J. and Kornman, B. A., 2002. Morphology and asymmetry of the vertical tide in the Westerschelde Estuary, Cont. Shelf Res., 22(17): 2599–2609.CrossRefGoogle Scholar
  30. Wang, Z. B., Karssen, B., Fokkink, R. J. and Langerak, A., 1998. A dynamic-empirical model for estuarine morphology, in: J. Dronkers, M.B.A.M. Scheffers (Eds.), Physics of Estuaries and Coastal Seas, Balkema, Rotterdam, pp. 279–286.Google Scholar
  31. Wang, Z. B., Townend, I. H. and Stive, M. J. F., 2014. Modelling of morphological response of tidal basins to sealevel rise revisited, Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) Conference, Porto de Galinhas, Pernambuco, Brazil.Google Scholar
  32. Yu, Q., Wang, Y. W., Gao, J. H., Gao, S. and Flemming, B., 2014. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping, J. Geophys. Res.-Oceans, 119(11): 7705–7724.CrossRefGoogle Scholar
  33. Zhou, Z., Coco, G., van der Wegen, M., Gong, Z., Zhang, C. K. and Townend, I. H., 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves, Cont. Shelf Res., 104, 76–91.CrossRefGoogle Scholar
  34. Zhou, Z., Roman, B. L. D. S. and Nicholls, R., 2013. An OpenMI-based combined model for alongshore sediment transport and shoreline change, Proceedings of the Institution of Civil Engineers-Maritime Engineering, 166(4): 175–186.CrossRefGoogle Scholar

Copyright information

© Chinese Ocean Engineering Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ian Townend
    • 1
  • Zheng Bing Wang
    • 2
    • 3
  • Marcel Stive
    • 2
  • Zeng Zhou
    • 4
  1. 1.University of SouthamptonSouthamptonUK
  2. 2.TU DelftDelftThe Netherlands
  3. 3.DeltaresDelftThe Netherlands
  4. 4.Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment SecurityHohai UniversityNanjingChina

Personalised recommendations