Skip to main content
Log in

Trapping mechanism of submerged ridge on trans-oceanic tsunami propagation

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

Based on the linear shallow water equations, an analytic solution of trapped waves over a symmetric parabolic-profile submerged ridge is derived. The trapped waves act as propagating waves along the ridge and as standing waves across the ridge. The amplitude gets the maximum at the ridge top and decays gradually towards both sides. The decaying rate gets more gently with higher modes. Besides, an explicit first-order approximate dispersion relation is derived to simplify transcendental functions in the exact solution, which is useful to describe trapped waves over shallowly submerged ridges in reality. Furthermore, the trapping mechanism of the submerged ridge waveguides on the trans-oceanic tsunami propagation can be explained by the ray theory. A critical incident angle exists as a criterion to determine whether the wave is trapped. Besides, a trapped parameter γ is proposed to estimate the ratio of the energy trapped by the oceanic ridge if a tsunami is generated at its top.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amante, C. and Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA.

    Google Scholar 

  • Buchwald, V. T., 1969. Long waves on oceanic ridges, Proceedings of the Royal Society A, 308(1494): 343–354.

    Article  Google Scholar 

  • Eckart, C., 1951. Surface Waves on Water of Variable Depth, University of California, Scripps.

    Google Scholar 

  • Guza, R. T. and Davis, R. E., 1974. Excitation of edge waves by waves incident on a beach, J. Geophys. Res., 79(9): 1285–1291.

    Article  Google Scholar 

  • Jones, D., 1953. The eigenvalues of -2u+-u= 0 when the boundary conditions are given on semi-infinite domains, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 49(04): 668–684.

    MathSciNet  MATH  Google Scholar 

  • Jung, T. H. and Lee, C., 2012. Analytical solutions for long waves on a circular island with combined topographies, Wave Motion, 49(1): 152–164.

    Article  Google Scholar 

  • Jung, T. H., Lee, C. and Cho, Y. S., 2010. Analytical solutions for long waves over a circular island, Coast. Eng., 57(4): 440–446.

    Article  Google Scholar 

  • Killworth, P. D., 1989. How much of a baroclinic coastal Kelvin wave gets over a ridge-J. Phys. Oceanogr., 19(3): 321–341.

    Article  Google Scholar 

  • Koshimura, S. I., Imamura, F. and Shuto, N., 2001. Characteristics of tsunamis propagating over oceanic ridges: Numerical simulation of the 1996 Irian Jaya earthquake tsunami, Nat. Hazards, 24(3): 213–229.

    Article  Google Scholar 

  • Kowalik, Z., Knight, W., Logan, T. and Whitmore, P., 2005. Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1): 40–56.

    Google Scholar 

  • Kowalik, Z., Knight, W., Logan, T. and Whitmore, P., 2007. The tsunami of 26 December, 2004. Numerical modeling and energy considerations, Pure Appl. Geophys, 164, 379–393.

    Article  Google Scholar 

  • Mei, C. C., 1989. The Applied Dynamics of Ocean Surface Waves, World Scientific, Singapore.

    MATH  Google Scholar 

  • Miller, G. R., Munk, W. H. and Snodgrass, F. E., 1962. Long-period waves over California’s continental borderland, ii, tsunamis, J. Mar. Res., 20(1): 31–41.

    Google Scholar 

  • Niu, X. and Yu, X., 2011. Analytic solution of long wave propagation over a submerged hump, Coast. Eng., 58(2): 143–150.

    Article  Google Scholar 

  • Olver, F., Lozier, D., Boisvert, R. and Clark, C., 2010. NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, London and New York.

    MATH  Google Scholar 

  • Rabinovich, A. B., Candella, R. N. and Thomson, R. E., 2011a. Energy decay of the 2004 Sumatra tsunami in the world ocean, Pure Appl. Geophys., 168(11): 1919–1950.

    Article  Google Scholar 

  • Rabinovich, A. B., Woodworth, P. L. and Titov, V. V., 2011b. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake passage, Geophys. Res. Lett., 38(16): L16604.

    Article  Google Scholar 

  • Reid, R. O., 1958. Effect of Coriolis force on edge waves (i) investigation of the normal modes, J. Mar. Res., 16(2): 109–144.

    MathSciNet  Google Scholar 

  • Shaw, R. P. and Neu, W., 1981. Long-wave trapping by oceanic ridges, J. Phys. Oceanogr., 11(10): 1334–1344.

    Article  Google Scholar 

  • Soloviev, S. L., and Go, C. N., 1975. A Catalogue of Tsunamis on the Western Shore of the Pacific Ocean, Academy of Sciences of the USSR, Nauka Publishing House, Moscow, 439 p.

    Google Scholar 

  • Stokes, G. G., 1846. Report on Recent Researches in Hydrodynamics, British Association for the Advancement of Science Report 1, 1–20.

    Google Scholar 

  • Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E. and González, F. I., 2005. The global reach of the 26 December 2004 Sumatra tsunami, Science, 309(5743): 2045–2048.

    Article  Google Scholar 

  • Ursell, F., 1951. Trapping modes in the theory of surface waves, Proceedings of the Cambridge Philosophical Society, 47(3): 347–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Ursell, F., 1952. Edge waves on a sloping beach, Proceedings of the Royal Society A, 214(1116): 79–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Ursell, F., 1987. Mathematical aspects of trapping modes in the theory of surface waves, J. Fluid Mech., 183(1): 421–437.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-hai Zheng  (郑金海) or Meng-jie Xiong  (熊梦婕).

Additional information

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51579090 and 51425901), the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering (Grant No. LP1405), the Open Foundation of the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province (Grant No. 2014SS02), and the Fundamental Research Funds for the Central University (Hohai University, Grant No. 2014B04114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Jh., Xiong, Mj. & Wang, G. Trapping mechanism of submerged ridge on trans-oceanic tsunami propagation. China Ocean Eng 30, 271–282 (2016). https://doi.org/10.1007/s13344-016-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-016-0017-7

Keywords

Navigation