Skip to main content
Log in

An experimental study on a trapezoidal pendulum wave energy converter in regular waves

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0–1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boccotti, P., 2007. Caisson breakwaters embodying an OWC with a small opening, Part I: Theory, Ocean Eng., 34(5): 806–919.

    Google Scholar 

  • Budal, K., Falnes, J., Iversen, L. C., Lillebekken, P. M., Oltedal, G., Hals, T. and Høy, A. S., 1982. The Norwegian wave-power buoy project, Proceedings of 2nd International Symposium on Wave Energy Utilization, Trondheim, Norway, 323–344.

    Google Scholar 

  • Caska, A. J. and Finnigan, T. D., 2008. Hydrodynamic characteristics of a cylindrical bottom-pivoted wave energy absorber, Ocean Eng., 35(1): 6–16.

    Article  Google Scholar 

  • Evans, D. V., 1985. The hydrodynamic efficiency of wave energy devices, in: Hydrodynamics of Ocean Wave Energy Utilisation, Lisbon, 1–34.

    Google Scholar 

  • Falcâo, A. F. O., 2010. Wave energy utilization: A review of the technologies, Renew. Sust. Energ. Rev., 14(3): 899–918.

    Article  Google Scholar 

  • Flocard, F. and Finnigan, T. D., 2010. Laboratory experiments on the power capture of pitching vertical cylinders in waves, Ocean Eng., 37(11–12): 989–997.

    Article  Google Scholar 

  • Goda, Y. and Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments, Proceedings of the 15th Conference on Coastal Engineering, Honolulu, Hawaii, 828–845.

    Google Scholar 

  • Kofoed, J. P., Frigaard, P., Friis-Madsen, E. and Sørensen, H. C., 2006. Prototype testing of the wave energy converter wave dragon, Renew. Energ., 31(2): 181–189.

    Article  Google Scholar 

  • Kondo, H., Watabe, T. and Yano, K., 1984. Wave power extraction at coastal structure by means of moving body in the chamber, Proceedings of the 19th Conference on Coastal Engineering, Houston, Texas, 2875–2891.

    Google Scholar 

  • López, I., Andreu, J., Ceballos, S., de Alegría, I. M. and Kortabarria, I., 2013. Review of wave energy technologies and the necessary power-equipment, Renew. Sust. Energ. Rev., 27, 413–434.

    Article  Google Scholar 

  • Mansard, E. P. and Funke, E. R., 1980. The measurement of incident and reflected spectra using a least squares method, Proceedings of the 17th Conference on Coastal Engineering, Sydney, Australia, 154–172.

    Google Scholar 

  • Margheritini, L., Vicinanza, D. and Kofoed, J. P., 2007. Hydraulic characteristics of seawave slot-cone generator pilot plant at Kvitsøy (Norway), Proceedings of the 7th European Wave Tidal Energy Conference, Porto, Portugal.

    Google Scholar 

  • Masuda, Y., 1971. Wave-Activated Generator, Int. Colloq Exposition Oceans, France, Bordeaux.

    Google Scholar 

  • Masuda, Y., 1979. Experimental full-scale results of wave power machine Kaimei in 1978, Proceedings of the 1st Symposium on Wave Energy Utilization, Gothenburg, Sweden, 349–363.

    Google Scholar 

  • Mehlum, E. T., 1986. Hydrodynamics of Ocean Wave Energy Utilization, Berlin, Springer, 51–55.

    Google Scholar 

  • Mei, C. C., 1976. Power extraction from water waves, J. Ship Res., 20, 63–66.

    Google Scholar 

  • Newman, J. N., 1977. Marine Hydrodynamics, Cambridge, MA, MIT Press.

    Google Scholar 

  • Pizer, D. J., Retzler, C., Henderson, R. M., Cowieson, F. L., Shaw, M. G., Dickens, B. and Hart, R., 2005. Pelamis WEC-recent advances in the numerical and experimental modeling programme, Proceedings of the 6th European Wave Tidal Energy Conference, Glasgow, UK, 373–378.

    Google Scholar 

  • Qiu, S. Q., Ye, J. W., Wang, D. J. and Liang, F. L., 2011a. Investigation on the efficiency of a pendulum energy converter in regular waves, Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, 650–654.

    Google Scholar 

  • Qiu, S. Q., Ye, J. W., Wang, D. J. and Liang, F. L., 2011b. Capture width study on a pendulum wave energy converter, Proceedings of 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 1–4.

    Google Scholar 

  • Qiu, S. Q., Ye, J. W., Wang, D. J. and Liang, F. L., 2013. Experimental study on a pendulum wave energy converter, China Ocean Eng., 27(3): 343–352.

    Article  Google Scholar 

  • Salter, S. H., 1974. Wave power, Nature, 249, 720–724.

    Article  Google Scholar 

  • Wang, D. J., Qiu, S. Q. and Ye, J. W., 2014a. Study on the hydrodynamics of a single-acting pendulum wave energy converter, Appl. Mech. Mater., 518, 209–214.

    Article  Google Scholar 

  • Wang, D. J., Qiu, S. Q. and Ye, J. W., 2014b. Study on hydrodynamics of a trapezoidal pendulum wave energy converter, Atca Energiae Solaris Sinica, 35(4): 589–593. (in Chinese)

    Google Scholar 

  • Wang, Y. X., Peng, J. P., Sun, H. Q. and Li, G. W., 2003. Separation of composite waves by an analytical method, The Ocean Engineering, 21(1): 42–46. (in Chinese).

    Google Scholar 

  • Whittaker, T., Collier, D., Folley, M., Osterried, M., Henry, A. and Crowley, M., 2007. The development of Oyster–A shallow water surging wave energy device, Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal.

    Google Scholar 

  • Whittaker, T., McIlwaine, S. J. and Raghunathan, S., 1993. A review of the Islay shoreline wave power station, Proceedings of First European Wave Energy Symposium, 283–286.

    Google Scholar 

  • Vicinanza, D. and Frigaard, P., 2008. Wave pressure acting on a seawave slot-cone generator, Coast. Eng, 55(6): 553–568.

    Article  Google Scholar 

  • Zhang, D. H., Li, W., Zhao, H. T., Bao, J. W. and Lin, Y. G., 2014. Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum, China Ocean Eng., 28(2): 283–292.

    Article  Google Scholar 

  • Zhao, H. T., Sun, Z. L., Hao, C. L. and Shen, J. F., 2013. Numerical modeling on hydrodynamic performance of a bottom-hinged flap wave energy converter, China Ocean Eng., 27(1): 73–86.

    Article  Google Scholar 

  • Zhu, S. T., 1999. Separation of regular waves by a transfer function method, Ocean Eng., 26(12): 1435–1446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-qiang Qiu  (邱守强).

Additional information

The research was financially supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China (Grant No. GD2010ZC02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dj., Qiu, Sq. & Ye, Jw. An experimental study on a trapezoidal pendulum wave energy converter in regular waves. China Ocean Eng 29, 623–632 (2015). https://doi.org/10.1007/s13344-015-0044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-015-0044-9

Key words

Navigation