Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

Abstract

Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

This is a preview of subscription content, access via your institution.

References

  1. Afgan, I., McNaughton, J., Rolfo, S., Apsley, D. D., Stallard, T. and Stansby, P., 2013. Turbulent flow and loading on a tidal stream turbine by LES and RANS, Int. J. Heat Fluid Fl., 43, 96–108.

    Article  Google Scholar 

  2. Bahaj, A. S., Molland, A. F., Chaplin, J. R. and Batten, W. M. J., 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renew. Energ., 32(3): 407–426.

    Article  Google Scholar 

  3. Batten, W. M. J., Bahaj, A. S., Molland, A. F. and Chaplin, J. R., 2008. The prediction of the hydrodynamic performance of marine current turbines, Renew. Energ., 33(5): 1085–1096.

    Article  Google Scholar 

  4. Chen, D. Y. and Jirka, G. H., 1995. Experimental study of plane turbulent wake in a shallow water layer, Fluid Dyn. Res., 16, 11–41.

    Article  MATH  Google Scholar 

  5. Egarr, D. A., O’Doherty, T., Morris, S. and Ayre, R. G., 2004. Feasibility study using computational fluid dynamics for the use of a turbine for extracting energy from the tide, Proceedings of 15th Australasian Fluid Mechanics Conference, the University of Sydney.

    Google Scholar 

  6. Guo, Y. K., Zhang, J. S. and Zhang, L. X., 2010. Numerical simulation of 3D flow around an overlapping cylinder, Proceedings of ICEMaritime Engineering, 163(2): 49–56.

    Article  Google Scholar 

  7. Harrison, M. E., Batten, W. M. J., Myers, L. E. and Bahaj, A. S., 2010. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines, IET Renewable Power Generation, 4(6): 613–627.

    Article  Google Scholar 

  8. Haydar, F. H., Ahmed, E. S. and Othman, A. K., 2012. Tidal current turbines glance at the past and look into future prospects in Malaysia, Renewable and Sustainable Energy Reviews, 16, 5707–5717.

    Article  Google Scholar 

  9. Kang, S., Borazjani, I., Colby, J. A. and Sotiropoulos, F., 2012. Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine, Adv. Water Resour., 39, 33–43.

    Article  Google Scholar 

  10. Khan, M. J., Bhuyan, G., Iqbal, M. T. and Quaicoe, J. E., 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Appl. Energ., 86(10): 1823–1835.

    Article  Google Scholar 

  11. Kim, K. P., Ahmed, M. R. and Lee, Y. H., 2012. Efficiency improvement of a tidal current turbine utilizing a larger area of channel, Renew. Energ., 48, 557–564.

    Article  Google Scholar 

  12. Master, I., Chapman, J. C., Orme, J. A. C. and Willis, M. R., 2010. A robust blade element momentum theory model for tidal stream turbines including tip and hub loss corrections, Marine Engineering, 10(1): 25–35.

    Google Scholar 

  13. Myers, L. and Bahaj, A. S., 2007. Wake studies of a 1/30-th scale horizontal axis marine current turbine, Ocean Eng., 34(5): 758–762.

    Article  Google Scholar 

  14. Myers, L. E. and Bahaj, A. S., 2012. An experimental investigation simulating flow effects in first generation marine current energy converter arrays, Renew. Energ., 37(1): 28–36.

    Article  Google Scholar 

  15. Myers, L. E., Keogh, B. and Bahaj, A. S., 2011. Experimental investigation of inter-array wake properties in early tidal turbine arrays, Proceedings of the OCEANS 2011, Waikoloa, HI, USA, 1–8.

    Google Scholar 

  16. Neill, S. P., Litt, E. J., Couch, S. J. and Davies, A. G., 2009. The impact of tidal stream turbines on large-scale sediment dynamics, Renew. Energ., 34(12): 2803–2812.

    Article  Google Scholar 

  17. O’Doherty, T., Egarr, D. A., Mason-Jones, A. and O’Doherty, D. M., 2009. An assessment of axial loading on a five-turbine array, Proceedings of the ICE-Energy, 162(2): 57–65.

    Article  Google Scholar 

  18. Rojagopalan, R. G. and Mathur, S. R., 1993. Three dimensional analysis of a rotor in forward flight, Journal of the American Helicopter Society, 38(3): 14–25.

    Article  Google Scholar 

  19. Rostamy, N., Sumner, D., Bergstrom, D. J. and Bugg, J. D., 2012. Local flow field of a surface-mounted finite circular cylinder, J. Fluid. Struct., 34, 105–122.

    Article  Google Scholar 

  20. Roulund, A., Sumer, B. M., Fredsøe, J. and Michelsen, J., 2005. Numerical and experimental investigation of flow and scour around a circular pile, J. Fluid Mech., 534, 351–401.

    Article  MATH  MathSciNet  Google Scholar 

  21. Sahin, B., Ozturk, N. A. and Akilli, H., 2007. Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate, Flow Meas. Instrum., 18, 57–68.

    Article  Google Scholar 

  22. Sørensen, J. N. and Kock, C. W., 1995. A model for unsteady rotor aerodynamics, J. Wind Eng. Ind. Aerod., 58, 259–275.

    Article  Google Scholar 

  23. Suh, J., Yang, J. M. and Stern, F., 2011. The effect of air-water interface on the vortex shedding from a vertical circular cylinder, J. Fluid. Struct., 27(1): 1–22.

    Article  Google Scholar 

  24. Wissink, J. G. and Rodi, W., 2008. Numerical study of the near wake of a circular cylinder, Int. J. Heat Fluid Fl., 29(4): 1060–1070.

    Article  Google Scholar 

  25. Xue, M. A., Lin, P. Z., Zheng, J. H., Ma, Y. X., Yuan, X. L. and Nguyen, V. T., 2013. Effects of perforated baffle on reducing sloshing in rectangular tank: experimental and numerical study, China Ocean Eng., 27(5): 615–628.

    Article  Google Scholar 

  26. Zhang, C., Zheng, J. H., Wang, Y. G. and Demirbilek, Z., 2011. Modeling wave-current bottom boundary layers beneath shoaling and breaking waves, Geo-Mar. Lett., 31(3): 189–201.

    Article  Google Scholar 

  27. Zhang, J. S., Zhang, Y., Jeng, D. S., Liu, P., Li, F. and Zhang, C., 2014. Numerical simulation of wave-current interaction using a RANS solver, Ocean Eng., 75, 157–164.

    Article  Google Scholar 

  28. Zhang, J. S., Zheng, J. H., Jeng, D. S. and Wang, G., 2012. Numerical simulation of solitary wave induced flow motion around a permeable submerged breakwater, J. Appl. Math., doi:10.1155/2012/508754.

    Google Scholar 

  29. Zhao, M., Cheng, L. and Zang, Z. P., 2010. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents, Coast. Eng., 57, 709–721.

    Article  Google Scholar 

  30. Zheng, J. H. and Tang, Y., 2009. Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current. China Ocean Eng., 23(1): 59–71.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-hai Zheng 郑金海.

Additional information

This research is funded by by the National Science Fund for Distinguished Young Scholars (Grant No. 51425901), the National Natural Science Foundation of China (Grant Nos. 51479053 and 51137002), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011026), the 111 Project (Grant No. B2012032), the Specialized Research Funding for the Doctoral Program of Higher Education (Grant No. 20130094110014), the Marine Renewable Energy Research Project of State Oceanic Administration (Grant No. GHME2013GC03), and the Fundamental Research Funds for the Central University (Hohai University, Grant Nos. 2013B31614 and 2014B04114).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Lj., Zheng, Jh., Peng, Yx. et al. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current. China Ocean Eng 29, 209–222 (2015). https://doi.org/10.1007/s13344-015-0015-1

Download citation

Key words

  • horizontal axis tidal turbine
  • numerical simulation
  • turbine performance
  • flow motion
  • steady current
  • marine renewable energy