Skip to main content
Log in

Infra-gravity wave generation by the shoaling wave groups over beaches

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

A physical parameter, µb, which was used to meet the forcing of primary short waves to be off-resonant before wave breaking, has been considered as an applicable parameter in the infra-gravity wave generation. Since a series of modulating wave groups for different wave conditions are performed to proceed with the resonant mechanism of infra-gravity waves prior to wave breaking, the amplitude growth of incident bound long wave is assumed to be simply controlled by the normalized bed slope, β b. The results appear a large dependence of the growth rate, α, of incident bound long wave, separated by the three-array method, on the normalized bed slope, β b. High spatial resolution of wave records enables identification of the cross-correlation between squared short-wave envelopes and infra-gravity waves. The cross-shore structure of infra-gravity waves over beaches presents the mechanics of incident bound- and outgoing free long waves with the formation of free standing long waves in the nearshore region. The wave run-up and amplification of infra-gravity waves in the swash zone appear that the additional long waves generated by the breaking process would modify the cross-shore structure of free standing long waves. Finally, this paper would further discuss the contribution of long wave breaking and bottom friction to the energy dissipation of infra-gravity waves based on different slope conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldock, T. E., 2006. Long wave generation by the shoaling and breaking of transient wave groups on a beach, Proc. R. Soc. Lond., A, 462, 1853–1876.

    Article  MATH  Google Scholar 

  • Baldock, T. E. and Huntley, D. A., 2002. Long wave forcing by the breaking of random gravity waves on a beach, Proc. R. Soc. Lond., A, 458, 2177–2201.

    Article  MathSciNet  MATH  Google Scholar 

  • Baldock, T. E., Huntley, D. A., Bird, P. A. D., O’Hare, T. and Bullock, G. N., 2000. Breakpoint generated surf beat induced by bi-chromatic wave groups, Coast. Eng., 39(2–4): 213–242.

    Article  Google Scholar 

  • Baldock, T. E. and O’Hare, T. J., 2004. Energy transfer and dissipation during surf beat conditions, Proc. 24th Int. Conf. Coast. Eng., ASCE, 1212–1224.

  • Baldock, T. E., Swan, E. C. and Taylor, P. H., 1996. A laboratory study of non-linear surface waves on water, Philos. Trans. R. Soc. Lond., A, 354, 649–676.

    Article  Google Scholar 

  • Battjes, J. A., 1974. Surf similarity, Proc. 14th Int. Conf. Coast. Eng., ASCE, Reston, Portugal, 466–480.

    Google Scholar 

  • Battjes, J. A., Bakkenes, H. J., Janssen, T. T. and van Dongeren, A. R., 2004. Shoaling of subharmonic gravity waves, J. Geophys. Res., 109, C020009.

    Article  Google Scholar 

  • Elgar, S. R. and Guza, T., 1985. Observations of bispectra of shoaling surface gravity waves, J. Fluid Mech., 161, 425–448.

    Article  Google Scholar 

  • Frigaard, P. and Brorsen, M., 1995. A time domain method for separating incident and reflected irregular waves, Coast. Eng., 24(3): 205–215.

    Article  Google Scholar 

  • Garrett, C. J. R. and Toulany, B., 1981. Variability of the flow through the strait of belle isle, J. Mar. Res., 39(1): 163–189.

    Google Scholar 

  • Guza, R. T., Thornton, E. B. and Holman, R. A., 1984. Swash on steep and shallow beaches, Proc. 19th Int. Conf. Coast. Eng., ASCE, 708–723.

  • Henderson, S. M. and Bowen, A. J., 2002. Observations of surf beat forcing and dissipation, J. Geophys. Res., 107(C11): 3193.

    Article  Google Scholar 

  • Hwung, H. H. and Chiang, W. S., 2005. The measurements on wave modulation and breaking, Meas. Sci. Technol., 16(10): 1921–1928.

    Article  Google Scholar 

  • Iribarren, C. R. and Nogales, C., 1949. Protection des ports, paper presented at xviith international navigation congress, Permanent Int. Assoc. of Navig. Congr., Lisbon, Portugal.

  • Janssen, T. T., Battjes, J. A. and van Dongeren, A. R., 2003. Long waves induced by short waves groups over a sloping bottom, J. Geophys. Res., 108(C8): 3252.

    Article  Google Scholar 

  • Kostense, J. K., 1984. Measurements of surf beat and setdown beneath wave groups, Proc. 19th Int. Conf. Coast. Eng., ASCE, 724–740.

  • Lancaster, P. and Alkauskas, K. S., 1996. Transform Methods in Applied Mathematics, John Wiley, New York.

    MATH  Google Scholar 

  • List, J. H., 1991. Wave groupiness variation in the nearshore, Coast. Eng., 15(6): 475–496.

    Article  Google Scholar 

  • List, J. H., 1992. A model for the generation of two dimensional surf beat, J. Geophys. Res., 97(C4): 5623–5635.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. and Stewart, R. W., 1962. Radiation stress and mass transport in gravity wave, with application to “surf beats”, J. Fluid Mech., 13(04): 481–504.

    Article  MathSciNet  Google Scholar 

  • Longuet-Higgins, M. S. and Stewart, R. W., 1964. Radiation stresses in water waves: A physical discussion, with applications, Deep Sea Res., 11(4): 529–562.

    Google Scholar 

  • Madsen, P. A., Sørensen, O. R. and Schäffer, H. A., 1997. Surf zone dynamics simulated by a Boussinesq type model. Part ii: Surf beat and swash oscillation for wave groups and irregular waves, Coast. Eng., 32(4): 289–319.

    Article  Google Scholar 

  • Masselink, G., 1995. Group bound long waves as a source of infra-gravity energy in the surf zone, Cont. Shelf Res., 15(13): 1525–1547.

    Article  Google Scholar 

  • Munk, W. H., 1949. Surf beats, Eos Trans AGU, 30, 849–854.

    Google Scholar 

  • Ruessink, B. G., 1998. Bound and free infra-gravity waves in the nearshore zone under breaking and non-breaking conditions, J. Geophys. Res., 103(C6): 12795–12805.

    Article  Google Scholar 

  • Schäffer, H. A., 1993. Infra-gravity waves induced by short wave groups, J. Fluid Mech., 247, 551–588.

    Article  MATH  Google Scholar 

  • Schäffer, H. A. and Svendsen, I. A., 1988. Surf beat generation on a mild slope beach, Proc. 21st Int. Conf. Coast. Eng., ASCE, 1058–1072.

  • Sobey, R. J. and Liang, H. B., 1986. Complex envelope identification of wave groups, Proc. 20th Int. Conf. Coast. Eng., ASCE, New York, 752–766.

    Google Scholar 

  • Symonds, G., Huntley, D. A. and Bowen, A. J., 1982. Two-dimensional surf beat: Long wave generation by a timevarying breakpoint, J. Geophys. Res., 87(C1): 492–499.

    Article  Google Scholar 

  • Tucker, M. J., 1950. Surf beats: Sea waves of 1 to 5 min, Period. Proc. R. Soc. London, A, 202(1071): 565–573.

    Article  Google Scholar 

  • van Dongeren, A. R., 1997. Numerical Modeling of Qquasi-3D Nearshore Hydrodynamics, Cent. for Appl. Coastal Res., Univ. of Delaware, Newark.

    Google Scholar 

  • van Dongeren, A. R., Battjes, J., Janssen, T., van Noorloos, J., Steenhauer, K., Steenbergen, G. and Reniers, A., 2007. Shoaling and shoreline dissipation of low-frequency waves, J. Geophys. Res., 112, C02011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwung-Hweng Hwung.

Additional information

This work is sponsored by the Research Center of Ocean Environment and Technology under Grant No. D99-1500 and the Science Council under Grant No. NSC-99-2915-I-006-044.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Hwung, HH. Infra-gravity wave generation by the shoaling wave groups over beaches. China Ocean Eng 26, 1–18 (2012). https://doi.org/10.1007/s13344-012-0001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-012-0001-9

Key words

Navigation