Skip to main content
Log in

Numerical simulation of wave-induced currents combined with parabolic mild-slope equation in curvilinear coordinates

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen, A. J., 1969. The generation of longshore currents on a plane beach, J. Mar. Res., 27(2): 206–215.

    Google Scholar 

  • Bowen, A. J., Inman, D. L. and Simmons, V. P., 1968. Wave “set-down” and “set-up”, J. Geophys. Res., 73(8): 2569–2577.

    Article  Google Scholar 

  • Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. and Chawla, A., 2000. Boussinesq modeling of wave transformation, breaking, and runup. II: 2D, J. Waterw. Port Coast. Ocean Eng., 126(1): 48–56.

    Article  Google Scholar 

  • Choi, J., Lim, C., Jeon, Y. and Yoon, S. B., 2007. Numerical simulation of irregular wave transformation due to wave-induced current, Journal of Hydro-Environment Research, 1(2): 133–142.

    Article  Google Scholar 

  • Choi, J., Lim, C., Lee, J. and Yoon, S. B., 2009. Evolution of waves and currents over a submerged laboratory shoal, Coast. Eng., 56(3): 297–312.

    Article  Google Scholar 

  • Ding, P. X., Kong, Y. Z. and Shi, F. Y., 1998. Radiation stress of water waves and its calculation, Journal of East China Normal University, 1, 82–87. (in Chinese)

    Google Scholar 

  • Gourlay, M. R., 1978. Wave Generated Currents, Ph. D. Thesis, Brisbane: University of Queensland, Australia.

    Google Scholar 

  • Hamm, L., 1992. Directional nearshore wave propagation over a rip channel: an experiment, Proceeding of the 23rd International Conference of Coastal Engineering, Venice, Italy, 226–239.

  • Kirby, J. T., 1988. Parabolic wave computations in non-orthogonal coordinate systems, J. Waterw. Port Coast. Ocean Eng., 114(6): 673–685.

    Article  Google Scholar 

  • Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B. and Dalrymple, R. A., 1998. Fully Nonlinear Boussinesq Wave Model, User Manual, Technical Report CACR-98-06, University of Delaware.

  • Li, S. and Huang, X., 2004. Numerical method for calculation of longshore current by using Boussinesq equations, Journal of Tianjin University, 37(12): 1059–1062. (in Chinese)

    Google Scholar 

  • Lin, X., Yin, B. S., Hou, Y. J., Su, J. Z. and Cheng, M. H., 2003. The effects of radiation stress on wave heights and sea level in the interaction of couple wave-tide-surge in the coastal area, Journal of Hydrodynamics, Ser. B, 15(1): 97–102.

    Google Scholar 

  • Longuet-Higgins, M. S. and Stewart, R. W., 1964. Radiation stress in water waves: a physical discussion with application, Deep-Sea Res., 11(5): 529–562.

    Google Scholar 

  • Longuet-Higgins, M. S., 1970. Longshore currents generated by obliquely incident sea waves, 1, J. Geophys. Res., 75(33): 6778–6801.

    Article  Google Scholar 

  • Lu, J. and Yu, X., 2008. Model for both nearshore waves and wave-induced currents based on Boussinesq equation, Chinese Journal of Hydrodynamics, 23(3): 314–320. (in Chinese)

    Google Scholar 

  • Lu, Y. J., Zuo, L. Q., Shao, X. J., Wang, H. C. and Li, H. L., 2005. A 2D mathematical model for sediment transport by waves and tidal currents, China Ocean Eng., 19(4): 571–586.

    Google Scholar 

  • MacMahan, J. H., Thornton, Ed B. and Reniers, Ad J. H. M., 2006. Rip current review, Coast. Eng., 53(2–3): 191–208.

    Article  Google Scholar 

  • Nielsen, C. and Apelt, C., 2003. The application of wave induced forces to a two-dimensional finite element long wave hydrodynamic model, Ocean Eng., 30(10): 1233–1251.

    Article  Google Scholar 

  • Shen, Y. M., Tang, J. and Huang, W. R., 2008. Numerical simulation of long-shore currents induced by regular breaking wave, J. Coast. Res., SI52, 215–222.

    Article  Google Scholar 

  • Shen, Y. M., Tang, J., Zheng, Y. H. and Qiu, D. H., 2006. Numerical simulation of wave current field in coastal zone based on parabolic mild slope equation, Chinese Journal of Hydraulic Engineering, 37(3): 301–307. (in Chinese)

    Google Scholar 

  • Shi, F. Y. and Kirby, J. T., 2005. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction, J. Comput. Phys., 204(2): 562–586.

    Article  MATH  Google Scholar 

  • Shi, F. Y., Dalrymple, R. A., Kirby, J. T., Chen, Q. and Kennedy, A., 2001. A fully nonlinear Boussinesq model in generalized curvilinear coordinates, Coast. Eng., 42(4): 337–358.

    Article  Google Scholar 

  • Shi, F. Y., Svendsen, I. A., Kirby, J. T. and Smith, J. M., 2003. A curvilinear version of a quasi-3D nearshore circulation model, Coast. Eng., 49(1–2): 99–124.

    Article  Google Scholar 

  • Sørensen, O. R., Schäffer, H. A. and Madsen, P. A., 1998. Surf zone dynamics simulated by a Boussinesq type model. III. Wave-induced horizontal nearshore circulations, Coast. Eng., 33(2–3): 155–176.

    Article  Google Scholar 

  • Sørensen, O. R., Schäffer, H. A. and Sørensen, L. S., 2004. Boussinesq-type modelling using an unstructured finite element technique, Coast. Eng., 50(4): 181–198.

    Article  Google Scholar 

  • Svendsen, I. A., Hass, K. and Zhao, Q., 2002. Quasi-3D Nearshore Circulation Model SHORECIRC, version 2.4, User Manual, Technical Report, University of Delaware.

  • Tang, J., Shen, Y. M., Zheng, Y. H. and Qiu, D. H., 2006. The numerical simulation of nearshore current combined with the elliptic mild-slope equation, Acta Oceanologica Sinica, 28(1): 146–150. (in Chinese)

    Google Scholar 

  • Tang, J., Shen, Y. M. and Qiu, D. H., 2007. Numerical simulation of pollutant movement in coastal surf zone, Engineering Science, 9(12): 63–68. (in Chinese)

    Google Scholar 

  • Tang, J., Shen, Y. M. and Qiu, D. H., 2008a. Numerical study of pollutant movement in waves and wave-induced longshore currents in surf zone, Acta Oceanologica Sinica, 27(1): 122–131.

    Google Scholar 

  • Tang, J., Shen, Y. M. and Qiu, D. H., 2008b. Numerical simulation of longshore currents and pollutant movement in waves and currents in coastal zone, Acta Oceanologica Sinica, 30(1): 147–155. (in Chinese)

    Google Scholar 

  • Tong, F. F., Shen, Y. M. and Cui, L., 2011. Numerical simulation of nearshore waves and wave-induced currents based on mild-slope equation in curvilinear coordinates, Scientia Sinica Phys. Mech & Astron, 42(1): 161–169.

    Article  Google Scholar 

  • Tong, F. F., Shen, Y. M., Tang, J. and Cui, L., 2010. Numerical modeling of the hyperbolic mild-slope equation in curvilinear coordinates, China Ocean Eng., 24(4): 585–596.

    Google Scholar 

  • Yoon, S. B., Cho, Y. and Lee, C., 2004. Effects of breaking-induced currents on refraction-diffraction of irregular waves over submerged shoal, Ocean Eng., 31(5–6): 633–652.

    Article  Google Scholar 

  • Zhang, H. S., Zhu, L. S. and You, Y. X., 2005. A numerical model for wave propagation in curvilinear coordinates, Coast. Eng., 52(6): 513–533.

    Article  Google Scholar 

  • Zheng, J. H. and Yan, Y. X., 2001. Vertical variations of wave-induced radiation stress tensor, Journal of Hydrodynamics, Ser. A, 16(2): 246–253. (in Chinese)

    Google Scholar 

  • Zheng, Y. H., Shen, Y. M. and Qiu, D. H., 2000a. Calculation of wave radiation stress connected with parabolic mild-slope equation, Acta Oceanologica Sinica, 22(6): 110–116. (in Chinese)

    Google Scholar 

  • Zheng, Y. H., Shen, Y. M. and Qiu, D. H., 2000b. Calculation of wave radiation stress in combination with parabolic mild slope equation, China Ocean Eng., 14(4): 495–502.

    Google Scholar 

  • Zheng, Y. H., Shen, Y. M. and Qiu, D. H., 2001. Numerical simulation of wave height and wave set-up in nearshore regions, China Ocean Eng., 15(1): 15–23.

    Google Scholar 

  • Zheng, Y. H., Shen, Y. M., Wu, X. G. and You, Y. G., 2004. Determination of wave energy dissipation factor and numerical simulation of wave height in the surf zone, Ocean Eng., 31(8–9): 1083–1092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cui  (崔 雷).

Additional information

This project is financially supported by the National Natural Science Foundation of China (Grant Nos. 50839001 and 50979036).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, L., Tong, Ff. & Shi, F. Numerical simulation of wave-induced currents combined with parabolic mild-slope equation in curvilinear coordinates. China Ocean Eng 25, 457–468 (2011). https://doi.org/10.1007/s13344-011-0037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-011-0037-2

Key words

Navigation