Skip to main content

Advertisement

Log in

Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Diabetes is a major health problem worldwide. It is a chronic metabolic disorder that produces overt hyperglycemic condition that occurs either when the pancreas does not produce enough insulin due to excessive destruction of pancreatic β-cells (type 1 diabetes) or due to development of insulin resistance (type 2 diabetes). An autoimmune condition known as type 1 diabetes (T1D) results in the targeted immune death of β-cells that produce insulin. The only available treatment for T1D at the moment is the lifelong use of insulin. Multiple islet autoantibody positivity is used to diagnose T1D. There are four standard autoantibodies observed whose presence shows the development of T1D: antibodies against insulin, glutamic acid decarboxylase (GAD65), zinc T8 transporter (ZnT8), and tyrosine phosphatase-like protein (ICA512). In type 2 diabetes (T2D), an inflammatory response precipitates as a consequence of the immune response to high blood glucose level along with the presence of inflammation mediators produced by macrophages and adipocytes in fat tissue. The slow and chronic inflammatory condition of adipose tissue produces insulin resistance leading to increased stress on pancreatic β-cells to produce more insulin to compensate for the insulin resistance. Thus, this stress condition exacerbates the apoptosis of β-cells leading to insufficient production of insulin, resulting in hyperglycemia which signifies late stage T2D. Therefore, the therapeutic utilization of immunosuppressive agents may be a better alternative over the use of insulin and oral hypoglycemic agents for the treatment of T1D and T2D, respectively. This review enlightens the immune intervention for the prevention and amelioration of T1D and T2D in humans with main focus on the antigen-specific immune suppressive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Inzucchi SE. Diagnosis of diabetes. N Engl J Med. 2013;368:193.

    CAS  PubMed  Google Scholar 

  2. Alam U, Asghar O, Azmi S, Malik RA. General aspects of diabetes mellitus. Handb Clin Neurol. 2014;126:211–22.

    Article  PubMed  Google Scholar 

  3. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes – 2018. Diabetes Care. 2018;41:S13-27.

    Article  Google Scholar 

  4. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    Article  CAS  PubMed  Google Scholar 

  5. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40.

    Article  CAS  PubMed  Google Scholar 

  6. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Phillips JM, Parish NM, Raine T, et al. Type 1 diabetes development requires both CD4+ and CD8+ T cells and can be reversed by non-depleting antibodies targeting both T cell populations. Rev Diabet Stud. 2009;6:97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Richardson SJ, Morgan NG, Foulis AK. Pancreatic pathology in type 1 diabetes mellitus. Endocr Pathol. 2014;25:80–92.

    Article  CAS  PubMed  Google Scholar 

  9. Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feuerer M, Shen Y, Littman DR, et al. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity. 2009;31:654–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pirot P, Eizirik DL, Cardozo AK. Interferon-gamma potentiates endoplasmic reticulum stress-induced death by reducing pancreatic beta cell defence mechanisms. Diabetologia. 2006;49:1229–36.

    Article  CAS  PubMed  Google Scholar 

  12. Saad MF, Knowler WC, Pettitt DJ, et al. Sequential changes in serum insulin concentration during development of noninsulin-dependent diabetes. Lancet. 1989;1:1356–9.

    Article  CAS  PubMed  Google Scholar 

  13. Tabák AG, Jokela M, Akbaraly TN, et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet. 2009;373:2215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and betacell function in human subjects. Evid Hyperb Funct Diabetes. 1993;42:1663–7.

    CAS  Google Scholar 

  15. Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature. 1997;389:610–4.

    Article  CAS  PubMed  Google Scholar 

  16. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  17. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  18. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  20. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    Article  CAS  PubMed  Google Scholar 

  21. Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37:753–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes. 2009;33:54–66.

    Article  CAS  Google Scholar 

  23. Gao Z, He Q, Peng B, et al. Regulation of nuclear translocation of HDAC3 by IkappaBalpha is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem. 2006;281:4540–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gao Z, Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem. 2002;277:48115–21.

    Article  CAS  PubMed  Google Scholar 

  25. Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275:9047–54.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Gao Z, Yin J, et al. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J Biol Chem. 2008;283:35375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rui L, Aguirre V, Kim JK, et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107:181–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62:1783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–80.

    Article  CAS  PubMed  Google Scholar 

  31. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494505.

    Article  Google Scholar 

  32. Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes. 2015;64:2207–19.

    Article  CAS  PubMed  Google Scholar 

  33. Antoniades C, Antonopoulos AS, Tousoulis D, et al. Adiponectin: from obesity to cardiovascular disease. Obes Rev. 2009;10:269–79.

    Article  CAS  PubMed  Google Scholar 

  34. Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24:67–74.

    Article  CAS  PubMed  Google Scholar 

  35. Cani PD, Osto M, Geurts L, et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3:279–88.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  37. Hersoug LG, Møller S, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev. 2016;17:297–312.

    Article  CAS  PubMed  Google Scholar 

  38. Remely M, Aumueller E, Merold C, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537:85–92.

    Article  CAS  PubMed  Google Scholar 

  39. Alvarez-Curto E, Milligan G. Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol. 2016;114:3–13.

    Article  CAS  PubMed  Google Scholar 

  40. Scheithauer TP, Dallinga-Thie GM, de Vos WM, et al. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5:759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nastasi C, Candela M, Bonefeld CM, et al. The effect of short chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cavelti-Weder C, Babians-Brunner A, Keller C, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35:1654–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sauter NS, Schulthess FT, Galasso R, et al. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology. 2008;149:2208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchetti P, Suleiman M, De Luca C, et al. A direct look at the dysfunction and pathology of the β cells in human type 2 diabetes. Semin Cell Dev Biol. 2020;103:83–93.

    Article  CAS  PubMed  Google Scholar 

  46. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.

    Article  CAS  PubMed  Google Scholar 

  47. Ardestani A, Li S, Annamalai K, et al. Neratinib protects pancreatic beta cells in diabetes. Nat Commun. 2019;10:1–17.

    Article  CAS  Google Scholar 

  48. Ardestani A, Maedler K. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia. 2016;59:1843–9.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan T, Annamalai K, Naik S, et al. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun. 2021;12:1–18.

    Article  Google Scholar 

  50. Rausch V, Hansen CG. The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol. 2020;30:32–48.

    Article  CAS  PubMed  Google Scholar 

  51. Chang YC, Wu JW, Wang CW, et al. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis. Front Mol Biosci. 2020;6:1–7.

    Article  Google Scholar 

  52. Wu S, Huang J, Dong J, et al. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003;114:445–56.

    Article  CAS  PubMed  Google Scholar 

  53. Yu F, Jiang R, Han W, et al. Gut microbiota transplantation from db/db mice induces diabetes-like phenotypes and alterations in Hippo signaling in pseudo germ-free mice. Aging. 2020;12:24156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ardestani A, Maedler K. The Hippo signaling pathway in pancreatic β-cells: functions and regulations. Endocr Rev. 2018;39:21–35.

    Article  PubMed  Google Scholar 

  55. Zhao B, Li L, Lei Q, et al. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fallahi E, O’Driscoll NA, Matallanas D. The MST/Hippo pathway and cell death: a non-canonical affair. Genes. 2016;7:28.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matallanas D, Romano D, Hamilton G, et al. A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle. 2008;7:879–84.

    Article  CAS  PubMed  Google Scholar 

  58. Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in drosophila and mammals. Cell. 2009;130:1120–33.

    Article  Google Scholar 

  59. Maugeri-Saccàa M, De Maria R. The Hippo pathway in normal development and cancer. Pharmacol Ther. 2018;186:60–72.

    Article  Google Scholar 

  60. Misra JR, Irvine KD. The hippo signaling network and its biological functions. Annu Rev Genet. 2018;52:65–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Nahdi AMT, John A, Haider R. Cytoprotective effects of N-acetylcysteine on streptozotocin-induced oxidative stress and apoptosis in RIN-5F pancreatic. Cell Physiol Biochem. 2018;51:201–16.

    Article  CAS  PubMed  Google Scholar 

  62. Ardestani A, Paroni F, Azizi Z, et al. MST1 is a novel regulator of apoptosis in pancreatic beta-cells. Nat Med. 2014;20:385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yuan T, Maedler K, Ardestani A. Pancreatic β-cell rescue in diabetes by targeting Merlin. Expert Rev Endocrinol Metab. 2017;12:97–9.

    Article  CAS  PubMed  Google Scholar 

  64. Liu J, Li J, Chen H, et al. Metformin suppresses proliferation and invasion of drug-resistant breast cancer cells by activation of the Hippo pathway. J Cell Mol Med. 2020;24:5786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shu Z, Gao Y, Zhang G, et al. A functional interaction between Hippo-YAP signalling and SREBPs mediates hepatic steatosis in diabetic mice. J Cell Mol Med. 2019;23:3616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weiner HL. Oral tolerance, an active immunologic process mediated by multiple mechanisms. J Clin Invest. 2000;106:935–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahon JL, Sosenko JM, Rafkin-Mervis L, et al. The TrialNet Natural History Study of the development of type 1 diabetes: objectives, design, and initial results. Pediatr Diabetes. 2009;10:97–104.

    Article  PubMed  Google Scholar 

  68. Skyler JS, Brown D, Chase HP, et al. Effects of insulin in relatives of patients with type 1 diabetes mellitus. New Engl J Med. 2002;346:1685–91.

    Article  CAS  Google Scholar 

  69. Nanto-Salonen K, Kupila A, Simell S, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372:1746–55.

    Article  PubMed  Google Scholar 

  70. Nakayama M, Abiru N, Moriyama H, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646–54.

    Article  CAS  PubMed  Google Scholar 

  72. Wicklow BA, Polychronakos C. Insulin auto-immunity: implications for the prevention of type 1 diabetes mellitus. Expert Rev Clin Immunol. 2009;5:55–62.

    Article  CAS  PubMed  Google Scholar 

  73. Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes. 2004;53:1884–9.

    Article  CAS  PubMed  Google Scholar 

  74. Burrack AL, Martinov T, Fife BT. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne). 2017;8:343.

    Article  PubMed  Google Scholar 

  75. Cabello-Olmo M, Araña M, Radichev I, et al. New insights into immunotherapy strategies for treating autoimmune diabetes. Int J Mol Sci. 2019;20:4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rathod S. Novel insights into the immunotherapy-based treatment strategy for autoimmune type 1 diabetes. Diabetology. 2022;3:79–96.

    Article  Google Scholar 

  77. Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity. 2008;41:11–8.

    Article  CAS  PubMed  Google Scholar 

  78. Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med. 2012;2: a007781.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Espinosa-Carrasco G, Le Saout C, Fontanaud P, et al. CD4+ T helper cells play a key role in maintaining diabetogenic CD8+ T cell function in the pancreas. Front Immunol. 2018;8:2001.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Anderson AM, Landry LG, Alkanani AA, et al. Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proc Natl Acad Sci U S A. 2021;118: e2107208118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Usmani-Brown S, Perdigoto AL, Lavoie N, et al. β cell responses to inflammation. Mol Metab. 2019;27S:S104–13.

    Article  PubMed  Google Scholar 

  82. Chatenoud L, Warncke K, Ziegler AG. Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2: a007716.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Paroni F, Domsgen E, Maedler K. CXCL10- a path to β-cell death. Islets. 2009;1:256–9.

    Article  PubMed  Google Scholar 

  84. Turner MD, Nedjai B, Hurst T, et al. Cytokines and chemokines : at the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta (BBA)–Mol Cell Res. 2014;1843:2563–82.

    Article  CAS  Google Scholar 

  85. Aschner P, Kipnes MS, et al. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29:2632–7.

    Article  CAS  PubMed  Google Scholar 

  86. Yamagishi S, Fukami K, Matsui T. Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications. Cardiovasc Diabetol. 2015;14:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yaron A, Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol. 1993;28:31–81.

    Article  CAS  PubMed  Google Scholar 

  88. Ohnuma K, Yamochi T, et al. CD26 mediates dissociation of Tollip and IRAK-1 from caveolin-1 and induces upregulation of CD86 on antigen-presenting cells. Mol Cell Biol. 2005;25:7743–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hiromura M, Nohtomi K, et al. Caveolin-1, a binding protein of CD26, is essential for the anti-inflammatory effects of dipeptidyl peptidase-4 inhibitors on human and mouse macrophages. Biochem biophys res commun. 2018;495:223–9.

    Article  CAS  PubMed  Google Scholar 

  90. Guo Q, Zhang S, et al. Alogliptin inhibits IL-1β-induced inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol. 2020;83: 106372.

    Article  CAS  PubMed  Google Scholar 

  91. Kume S, Takeya M, et al. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol. 1995;147:654–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kajikawa M, Nakashima A, et al. Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care. 2015;38:119–25.

    Article  CAS  PubMed  Google Scholar 

  93. Allahverdian S, Pannu PS, et al. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res. 2012;95:165–72.

    Article  CAS  PubMed  Google Scholar 

  94. Terasaki M, Yashima H, et al. A dipeptidyl peptidase-4 inhibitor inhibits foam cell formation of macrophages in type 1 diabetes via suppression of CD36 and ACAT-1 expression. Int J Mol Sci. 2020;21:4811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liadis N, Murakami K, et al. Caspase-3-dependent β-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol. 2005;25:3620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Samaha MM, Said E, et al. A comparative study of the role of crocin and sitagliptin in attenuation of STZ-induced diabetes mellitus and the associated inflammatory and apoptotic changes in pancreatic β-islets. Environ toxicol pharmacol. 2019;72: 103238.

    Article  CAS  PubMed  Google Scholar 

  97. Mahabadi-Ashtiyani E, Sheikh V, et al. The increased T helper cells proliferation and inflammatory responses in patients with type 2 diabetes mellitus is suppressed by sitagliptin and vitamin D3 in vitro. Inflamm Res. 2019;68:857–66.

    Article  CAS  PubMed  Google Scholar 

  98. Borzouei S, Sheikh V, et al. Anti-Inflammatory effect of combined sitagliptin and vitamin D3 on cytokines profile in patients with type 2 diabetes mellitus. J Interferon Cytokine Res. 2019;39:293–301.

    Article  CAS  PubMed  Google Scholar 

  99. Li Y, Zhang Z, Yang L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience. 2020;23:101160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9:601–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pinheiro MM, et al. Cytokine storm modulation in COVID-19: a proposed role for vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4i). Immunotherapy. 2021;13:753–65.

    Article  CAS  PubMed  Google Scholar 

  102. Pal R, Banerjee M, et al. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and meta-analysis. Ther Adv Endocrinol Metab. 2021;12:2042018821996482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yuan M, et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science. 2001;293:1673–7.

    Article  CAS  PubMed  Google Scholar 

  104. Shoelson SE, Lee J, et al. Inflammation and the IKKβ/IκB/NF-κB axis in obesity and diet-induced insulin resistance. Int J Obes Relat Metab Disord. 2003;27:S49-52.

    Article  CAS  PubMed  Google Scholar 

  105. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333.

    Article  CAS  PubMed  Google Scholar 

  106. Akira S, Uematsu S, et al. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  107. Lee JY, Sohn KH, et al. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase2 mediated through Toll-like receptor 4. J Biol Chem. 2001;276:16683–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ramasamy R, Yan SF, et al. The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Trends Cardiovasc Med. 2005;15:237–43.

    Article  CAS  PubMed  Google Scholar 

  109. Pascual G, Fong AL, et al. A SUMOylation-dependent pathway mediates trans repression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lalenti A, Grassia G, et al. Mechanism of the anti-inflammatory effect of thiazolidinediones: relationship with the glucocorticoid pathway. Mol Pharmacol. 2005;67:1620–8.

    Article  Google Scholar 

  111. Evans JM, Ogston SA, et al. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia. 2006;49:930–6.

    Article  CAS  PubMed  Google Scholar 

  112. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  113. Clark K, Peggie M, et al. Novel cross-talk within the IKK family controls innate immunity. Biochem J. 2011;434:93–104.

    Article  CAS  PubMed  Google Scholar 

  114. Cameron AR, Morrison VL, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119:652–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol. 2004;20:455–80.

    Article  CAS  PubMed  Google Scholar 

  116. Hundal RS, Petersen KF, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109:1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kopp E, Ghosh S. Inhibition of NF kappa B by sodium salicylate and aspirin. Science. 1994;265:956–9.

    Article  CAS  PubMed  Google Scholar 

  118. Yin MJ, Yamamoto Y, et al. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature. 1998;396:77–80.

    Article  CAS  PubMed  Google Scholar 

  119. Thompson PL, Nidorf SM, et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease: lessons from the CANTOS trial. J Thorac Dis. 2018;10:695–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Everett BM, Donath MY, et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018;71:2392–401.

    Article  CAS  PubMed  Google Scholar 

  121. Kataria Y, Ellervik C, et al. Treatment of type 2 diabetes by targeting interleukin-1: a meta-analysis of 2921 patients. Semin Immunopathol. 2019;41:413–25.

    Article  PubMed  Google Scholar 

  122. Dominguez H, Storgaard H, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2005;42:517–25.

    Article  CAS  PubMed  Google Scholar 

  123. Gonzalez-Gay MA, De Matias JM, et al. Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2006;24:83–6.

    CAS  PubMed  Google Scholar 

  124. Ban E, Jeong S, et al. Accelerated wound healing in diabetic mice by miRNA-497 and its anti-inflammatory activity. Biomed Pharmacother. 2020;121: 109613.

    Article  CAS  PubMed  Google Scholar 

  125. Rissanen A, Howard CP, Botha J, et al. Effect of anti-IL-1beta antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab. 2012;14:1088–96.

    Article  CAS  PubMed  Google Scholar 

  126. van Asseldonk EJ, Stienstra R, Koenen TB, et al. Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2011;96:2119–26.

    Article  PubMed  Google Scholar 

  127. Sloan-Lancaster J, Abu-Raddad E, Polzer J, et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care. 2013;36:2239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fleischman A, Shoelson SE, Bernier R, et al. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–94.

    Article  CAS  PubMed  Google Scholar 

  129. Kiortsis DN, Mavridis AK, Vasakos S, et al. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 2005;64:765–6.

    Article  CAS  PubMed  Google Scholar 

  130. Ramos-Zavala MG, González-Ortiz M, Martínez-Abundis E, et al. Effect of diacerein on insulin secretion and metabolic control in drug-naive patients with type 2 diabetes: a randomized clinical trial. Diabetes Care. 2011;34:1591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stanley TL, Zanni MV, Johnsen S, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E146–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Kumar Arora.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, U., Senapati, D. & Arora, M.K. Insights on the role of anti-inflammatory and immunosuppressive agents in the amelioration of diabetes. Diabetol Int 14, 134–144 (2023). https://doi.org/10.1007/s13340-022-00607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-022-00607-9

Keywords

Navigation