Skip to main content

Advertisement

Log in

Clinical parameters correlated with the psoas muscle index in Japanese individuals with type 2 diabetes mellitus

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Aims

Muscle atrophy is a diabetic complication, which results in a deterioration in glycemic control in type 2 diabetes mellitus (T2DM) individuals. The psoas muscle mass index (PMI) is a reliable indicator for estimating whole-body muscle mass. We aimed to examine the relationship between clinical parameters and the PMI to clarify the mechanism underlying muscle atrophy in diabetes.

Methods

This retrospective, cross-sectional study examined 51 patients (31 men and 20 women) with T2DM and a mean HbA1c value of 9.9 ± 1.7%. These patients were admitted to Aichi Medical University Hospital and underwent abdominal computed tomography imaging from July 2020 to April 2021. Multiple clinical parameters were assessed with the PMI.

Results

In a multiple regression analysis adjusted for age and sex, the PMI was correlated with body weight, body mass index, serum concentrations of corrected calcium, aspartate aminotransferase, alanine aminotransferase, creatine kinase, thyroid-stimulating hormone (TSH), urinary C-peptide concentrations, the free triiodothyronine/free thyroxine (FT3/FT4) ratio, and the young adult mean score at the femur neck. Receiver operating characteristic curves were created using TSH concentrations and the FT3/FT4 ratio for diagnosing a low PMI. The area under the curve was 0.593 and 0.699, respectively. The cut-off value with maximum accuracy for TSH concentrations was 1.491 μIU/mL, sensitivity was 56.1%, and specificity was 80.0%. Corresponding values for the FT3/FT4 ratio were 1.723, 78.0, and 66.7%, respectively.

Conclusion

TSH concentrations and the FT3/FT4 ratio are correlated with the PMI, and their thresholds may help prevent muscle mass loss in Japanese individuals with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

    Article  Google Scholar 

  2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. https://doi.org/10.1038/nrendo.2017.151.

    Article  Google Scholar 

  3. Umegaki H. Sarcopenia and diabetes: hyperglycemia is a risk factor for age-associated muscle mass and functional reduction. J Diabetes Investig. 2015;6(6):623–4. https://doi.org/10.1111/jdi.12365.

    Article  Google Scholar 

  4. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403. https://doi.org/10.1016/s1097-2765(04)00211-4.

    Article  CAS  Google Scholar 

  5. Yang S, Yang G, Wu H, Kang L, Xiang J, Zheng P, et al. MicroRNA-193b impairs muscle growth in mouse models of type 2 diabetes by targeting the PDK1/Akt signalling pathway. Diabetologia. 2022;65(3):563–81. https://doi.org/10.1007/s00125-021-05616-y.

    Article  CAS  Google Scholar 

  6. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev. 2016;22:94–109.

    Google Scholar 

  7. Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999;48(5):1198–214. https://doi.org/10.2337/diabetes.48.5.1198.

    Article  CAS  Google Scholar 

  8. Eckardt K, Görgens SW, Raschke S, Eckel J. Myokines in insulin resistance and type 2 diabetes. Diabetologia. 2014;57(6):1087–99. https://doi.org/10.1007/s00125-014-3224-x.

    Article  CAS  Google Scholar 

  9. Ueki H, Hara T, Okamura Y, Bando Y, Terakawa T, Furukawa J, et al. Association between sarcopenia based on psoas muscle index and the response to nivolumab in metastatic renal cell carcinoma: a retrospective study. Investig Clin Urol. 2022;63(4):415–24. https://doi.org/10.4111/icu.20220028.

    Article  Google Scholar 

  10. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, et al. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 2016;32(11–12):1200–5. https://doi.org/10.1016/j.nut.2016.04.003.

    Article  Google Scholar 

  11. Ito K, Ookawara S, Imai S, Kakuda H, Bandai Y, Fueki M, et al. Muscle mass evaluation using psoas muscle mass index by computed tomography imaging in hemodialysis patients. Clin Nutr ESPEN. 2021;44:410–4. https://doi.org/10.1016/j.clnesp.2021.04.029.

    Article  Google Scholar 

  12. Yamaguchi K, Kitamura M, Takazono T, Sato S, Yamamoto K, Notomi S, et al. Association between the psoas muscle index and hospitalization for pneumonia in patients undergoing hemodialysis. BMC Nephrol. 2021;22(1):394. https://doi.org/10.1186/s12882-021-02612-7.

    Article  Google Scholar 

  13. Murea M, Lenchik L, Register TC, Russell GB, Xu J, Smith SC, et al. Psoas and paraspinous muscle index as a predictor of mortality in African American men with type 2 diabetes mellitus. J Diabetes Complic. 2018;32(6):558–64. https://doi.org/10.1016/j.jdiacomp.2018.03.004.

    Article  Google Scholar 

  14. Tucker BM, Hsu FC, Register TC, Xu J, Smith SC, Murea M, et al. Psoas and paraspinous muscle measurements on computed tomography predict mortality in European Americans with type 2 diabetes mellitus. J Frailty Aging. 2019;8(2):72–8. https://doi.org/10.14283/jfa.2019.5.

    Article  CAS  Google Scholar 

  15. Li S, Yu H, Zhang P, Tu Y, Xiao Y, Yang D, et al. The Nonlinear relationship between psoas cross-sectional area and BMI: A new observation and its insights into diabetes remission after roux-en-Y gastric bypass. Diabetes Care. 2021;44(12):2783–6. https://doi.org/10.2337/dc20-2907.

    Article  Google Scholar 

  16. Lu CQ, Wang YC, Meng XP, Zhao HT, Zeng CH, Xu W, et al. Diabetes risk assessment with imaging: a radiomics study of abdominal CT. Eur Radiol. 2019;29(5):2233–42. https://doi.org/10.1007/s00330-018-5865-5.

    Article  Google Scholar 

  17. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–29. https://doi.org/10.1016/S2213-8587(14)70034-8.

    Article  Google Scholar 

  18. Monaco CMF, Perry CGR, Hawke TJ. Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder. Curr Opin Neurol. 2017;30(5):545–52. https://doi.org/10.1097/WCO.0000000000000479.

    Article  CAS  Google Scholar 

  19. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care. 2007;30(6):1507–12. https://doi.org/10.2337/dc06-2537.

    Article  Google Scholar 

  20. Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32(11):1993–7. https://doi.org/10.2337/dc09-0264.

    Article  Google Scholar 

  21. Andersen H, Gjerstad MD, Jakobsen J. Atrophy of foot muscles: a measure of diabetic neuropathy. Diabetes Care. 2004;27(10):2382–5. https://doi.org/10.2337/diacare.27.10.2382.

    Article  Google Scholar 

  22. Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40(9):1062–9. https://doi.org/10.1007/s001250050788.

    Article  CAS  Google Scholar 

  23. Yagihashi S, Yamagishi S, Wada R. Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract. 2007;77(Suppl 1):S184–9. https://doi.org/10.1016/j.diabres.2007.01.054.

    Article  CAS  Google Scholar 

  24. Funamizu T, Nagatomo Y, Saji M, Iguchi N, Daida H, Yoshikawa T. Low muscle mass assessed by psoas muscle area is associated with clinical adverse events in elderly patients with heart failure. PLoS ONE. 2021;16(2): e0247140. https://doi.org/10.1371/journal.pone.0247140.

    Article  CAS  Google Scholar 

  25. Ozeki N, Kawaguchi K, Fukui T, Nakamura S, Hakiri S, Mori S, et al. Psoas muscle mass in patients undergoing lung cancer surgery: a prognostic difference between squamous cell carcinoma and adenocarcinoma. Int J Clin Oncol. 2020;25(5):876–84. https://doi.org/10.1007/s10147-020-01624-x.

    Article  CAS  Google Scholar 

  26. Sinaki M, McPhee MC, Hodgson SF, Merritt JM, Offord KP. Relationship between bone mineral density of spine and strength of back extensors in healthy postmenopausal women. Mayo Clin Proc. 1986;61(2):116–22. https://doi.org/10.1016/s0025-6196(12)65197-0.

    Article  CAS  Google Scholar 

  27. Reginster JY, Beaudart C, Buckinx F, Bruyère O. Osteoporosis and sarcopenia: two diseases or one? Curr Opin Clin Nutr Metab Care. 2016;19(1):31–6. https://doi.org/10.1097/MCO.0000000000000230.

    Article  Google Scholar 

  28. Pan Y, Xu J. Association between muscle mass, bone mineral density and osteoporosis in type 2 diabetes. J Diabetes Investig. 2022;13(2):351–8. https://doi.org/10.1111/jdi.13642.

    Article  CAS  Google Scholar 

  29. Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55–70. https://doi.org/10.1016/j.arr.2015.03.002.

    Article  CAS  Google Scholar 

  30. Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA. 2004;101(47):16689–94. https://doi.org/10.1073/pnas.0407429101.

    Article  CAS  Google Scholar 

  31. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the national health and nutrition examination survey III. PLoS ONE. 2010;5(5): e10805. https://doi.org/10.1371/journal.pone.0010805.

    Article  CAS  Google Scholar 

  32. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–9. https://doi.org/10.1093/ageing/afs194.

    Article  Google Scholar 

  33. Kwak JH, Jun DW, Lee SM, Cho YK, Lee KN, Lee HL, et al. Lifestyle predictors of obese and non-obese patients with nonalcoholic fatty liver disease: a cross-sectional study. Clin Nutr. 2018;37(5):1550–7. https://doi.org/10.1016/j.clnu.2017.08.018.

    Article  Google Scholar 

  34. Hayashi Y. Glutaminostatin: another facet of glucagon as a regulator of plasma amino acid concentrations. J Diabetes Investig. 2019;10(6):1391–3. https://doi.org/10.1111/jdi.13110.

    Article  CAS  Google Scholar 

  35. Watanabe C, Seino Y, Miyahira H, Yamamoto M, Fukami A, Ozaki N, et al. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes. 2012;61(1):74–84. https://doi.org/10.2337/db11-0739.

    Article  CAS  Google Scholar 

  36. Ueno S, Seino Y, Hidaka S, Maekawa R, Takano Y, Yamamoto M, et al. High protein diet feeding aggravates hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Nutrients. 2022;14(5):975. https://doi.org/10.3390/nu14050975.

    Article  CAS  Google Scholar 

  37. Verlaan S, Aspray TJ, Bauer JM, Cederholm T, Hemsworth J, Hill TR, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36(1):267–74. https://doi.org/10.1016/j.clnu.2015.11.013.

    Article  Google Scholar 

  38. Ter Borg S, de Groot LC, Mijnarends DM, de Vries JH, Verlaan S, Meijboom S, et al. Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults-results from the maastricht sarcopenia study. J Am Med Dir Assoc. 2016;17(5):393–401. https://doi.org/10.1016/j.jamda.2015.12.015.

    Article  Google Scholar 

  39. Waters DL, Wayne SJ, Andrieu S, Cesari M, Villareal DT, Garry P, et al. Sexually dimorphic patterns of nutritional intake and eating behaviors in community-dwelling older adults with normal and slow gait speed. J Nutr Health Aging. 2014;18(3):228–33. https://doi.org/10.1007/s12603-014-0004-8.

    Article  CAS  Google Scholar 

  40. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757–67. https://doi.org/10.1515/CCLM.2010.179.

    Article  CAS  Google Scholar 

  41. Liu J, Yu D, Xu M, Feng R, Sun Y, Yin X, et al. β-Cell function is associated with osteosarcopenia in middle-aged and older nonobese patients with type 2 diabetes: a cross-sectional study. Open Med (Wars). 2021;16(1):1583–90. https://doi.org/10.1515/med-2021-0376.

    Article  CAS  Google Scholar 

  42. Tanaka K, Kanazawa I, Sugimoto T. Reduction in endogenous insulin secretion is a risk factor of sarcopenia in men with type 2 diabetes mellitus. Calcif Tissue Int. 2015;97(4):385–90. https://doi.org/10.1007/s00223-015-9990-8.

    Article  CAS  Google Scholar 

  43. Sakai S, Tanimoto K, Imbe A, Inaba Y, Shishikura K, Tanimoto Y, et al. Decreased β-cell function is associated with reduced skeletal muscle mass in Japanese subjects without diabetes. PLoS ONE. 2016;11(9): e0162603. https://doi.org/10.1371/journal.pone.0162603.

    Article  CAS  Google Scholar 

  44. Shishikura K, Tanimoto K, Sakai S, Tanimoto Y, Terasaki J, Hanafusa T. Association between skeletal muscle mass and insulin secretion in patients with type 2 diabetes mellitus. Endocr J. 2014;61(3):281–7. https://doi.org/10.1507/endocrj.ej13-0375.

    Article  CAS  Google Scholar 

  45. Chung YH, Park KS, Lee KU, Kim SY, Lee HK, Min HK. High 24-hour urinary C-peptide excretion in non-insulin dependent diabetes mellitus. Korean J Intern Med. 1986;1(2):172–7. https://doi.org/10.3904/kjim.1986.1.2.172.

    Article  CAS  Google Scholar 

  46. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82. https://doi.org/10.1152/physrev.00030.2013.

    Article  CAS  Google Scholar 

  47. Larsen PR. Thyroidal triiodothyronine and thyroxine in Graves’ disease: correlation with presurgical treatment, thyroid status, and iodine content. J Clin Endocrinol Metab. 1975;41(06):1098–104. https://doi.org/10.1210/jcem-41-6-1098.

    Article  CAS  Google Scholar 

  48. Citterio CE, Veluswamy B, Morgan SJ, Galton VA, Banga JP, Atkins S, et al. Triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone. J Biol Chem. 2017;292(37):15434–44. https://doi.org/10.1074/jbc.M117.784447.

    Article  CAS  Google Scholar 

  49. Razvi S, Weaver JU, Pearce SH. Subclinical thyroid disorders: significance and clinical impact. J Clin Pathol. 2010;63(5):379–86. https://doi.org/10.1136/jcp.2008.057414.

    Article  CAS  Google Scholar 

  50. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29(1):76–131. https://doi.org/10.1210/er.2006-0043.

    Article  CAS  Google Scholar 

  51. de Lloyd A, Bursell J, Gregory JW, Rees DA, Ludgate M. TSH receptor activation and body composition. J Endocrinol. 2010;204(1):13–20. https://doi.org/10.1677/JOE-09-0262.

    Article  CAS  Google Scholar 

  52. Brennan MD, Powell C, Kaufman KR, Sun PC, Bahn RS, Nair KS. The impact of overt and subclinical hyperthyroidism on skeletal muscle. Thyroid. 2006;16(4):375–80. https://doi.org/10.1089/thy.2006.16.375.

    Article  Google Scholar 

  53. Ohn JH, Han SK, Park DJ, Park KS, Park YJ. Expression of thyroid stimulating hormone receptor mRNA in mouse C2C12 skeletal muscle cells. Endocrinol Metab (Seoul). 2013;28(2):119–24. https://doi.org/10.3803/EnM.2013.28.2.119.

    Article  Google Scholar 

  54. Moon MK, Kang GH, Kim HH, Han SK, Koo YD, Cho SW, et al. Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression. Mol Cell Endocrinol. 2016;436:50–8. https://doi.org/10.1016/j.mce.2016.07.018.

    Article  CAS  Google Scholar 

  55. Boschi A, Daumerie C, Spiritus M, Beguin C, Senou M, Yuksel D, et al. Quantification of cells expressing the thyrotropin receptor in extraocular muscles in thyroid associated orbitopathy. Br J Ophthalmol. 2005;89(6):724–9. https://doi.org/10.1136/bjo.2004.050807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Division of Diabetes for collecting the clinical data, and Masato Yamauchi for guiding us in measuring the area of the psoas muscles by CT images. We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by EA-H, YM, and TH. The first draft of the manuscript was written by EA-H, YM, and TH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshiaki Morishita.

Ethics declarations

Conflict of interest

Hideki Kamiya received lecture fees from Novo Nordisk Pharma, Sanofi, Sumitomo Pharma, Nippon Boehringer Ingelheim, Eli Lilly Japan, Daiichi Sankyo, Ono Pharmaceutical, Kissei Pharmaceutical, Mitsubishi Tanabe Pharma, Kowa, Novartis Pharma, MSD, and Sanwa Kagaku Kenkyusho. Jiro Nakamura received lecture fees from MSD, Novo Nordisk Pharma, Sanofi, Daiichi Sankyo, Ono Pharmaceutical, Novartis Pharma, Taisho Pharmaceutical, Takeda Pharmaceutical, and Terumo. Hideki Kamiya and Jiro Nakamura received research funding from Eli Lilly Japan, Ono Pharmaceutical, and Kissei Pharmaceutical. Hideki Kamiya and Jiro Nakamura received subsidies or donations from MSD, Ono Pharmaceutical, Sumitomo, Pharma, Takeda Pharmaceutical, Mitsubishi Tanabe Pharma, Japan Tobacco, Novo Nordisk Pharma, and Taisho Pharmaceutical. Hideki Kamiya and Jiro Nakamura received endowed departments by commercial entities from Ono Pharmaceutical, Abbott Japan, Sanwa Kagaku Kenkyusho, Kowa, and Terumo. The remaining authors (E Asano-Hayami, Yoshiaki Morishita, T Hayami, Y Shibata, T Kiyose, S Sasajima, Y Hayashi, M Motegi, M Kato, S Asano, H Nakai-Shimoda, Y Yamada, E Miura-Yura, T Himeno, M Kondo, S Tsunekawa, and Y Kato) declare that they have no conflict of interest.

Ethical approval

This study has been approved by the Institutional Review Board of Aichi Medical University (approval number: 2019–133, approval date: 01/10/2020). This study was conducted in compliance with the ethical principles of the Declaration of Helsinki. Informed consent was obtained by the opt-out methods on the website of Aichi Medical University Hospital (https://www.aichi-med-u.ac.jp/hospital/files/byoin/rinH_2019-149.pdf).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano-Hayami, E., Morishita, Y., Hayami, T. et al. Clinical parameters correlated with the psoas muscle index in Japanese individuals with type 2 diabetes mellitus. Diabetol Int 14, 76–85 (2023). https://doi.org/10.1007/s13340-022-00602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-022-00602-0

Keywords

Navigation