Skip to main content

Advertisement

Log in

Japanese Type 1 Diabetes Database Study (TIDE-J): rationale and study design

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is classified into three subtypes: acute-onset, slowly progressive, and fulminant T1D, according to the heterogeneity of clinical course in Japan. Although several cross-sectional databases of T1D have been reported, prospective longitudinal databases to investigate clinical outcomes are lacking in our country. Therefore, we herein construct multi-center prospective longitudinal database of the three subtypes of T1D, accompanied with genetic information and biobanking, which is named Japanese Type 1 Diabetes Database Study (TIDE-J). Inclusion criteria of this study are as follows: (1) the duration of T1D was less than 5 years, (2) the patients had one or more islet-related autoantibodies and/or fasting serum C-peptide levels were less than 1.0 ng/mL, (3) the patients could clearly understand the study consent in writing. In the TIDE-J, clinical data, including glycemic control, endogenous insulin secretion, islet-related autoantibodies, diabetic complications, and treatment, are collected annually using electric data collection system, which is named REDCap. Furthermore, HLA genotypes of each participant were analyzed at entry and the blood samples were stored for assessing exploratory markers and further genetic analysis annually. The TIDE-J certainly helps in revealing distinct clinical course of each T1D subtype. Moreover, this database may help in identifying novel markers for diagnosing each subtype of T1D and predicting clinical outcomes (including pancreatic beta cell function and disease severity) in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during this study are available from the corresponding author upon reasonable request.

References

  1. Katsarou A, Gudbjornsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primers. 2017;3: 17016. https://doi.org/10.1038/nrdp.2017.16.

    Article  PubMed  Google Scholar 

  2. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82. https://doi.org/10.1016/S0140-6736(13)60591-7.

    Article  PubMed  Google Scholar 

  3. Roep BO, Peakman M. Diabetogenic T lymphocytes in human Type 1 diabetes. Curr Opin Immunol. 2011;23(6):746–53. https://doi.org/10.1016/j.coi.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  4. Roep BO, Tree TI. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol. 2014;10(4):229–42. https://doi.org/10.1038/nrendo.2014.2.

    Article  CAS  PubMed  Google Scholar 

  5. Schoenaker DA, Simon D, Chaturvedi N, Fuller JH, Soedamah-Muthu SS, EPCS Group. Glycemic control and all-cause mortality risk in type 1 diabetes patients: the EURODIAB prospective complications study. J Clin Endocrinol Metab. 2014;99(3):800–7. https://doi.org/10.1210/jc.2013-2824.

    Article  CAS  PubMed  Google Scholar 

  6. Patterson CC, Dahlquist G, Harjutsalo V, Joner G, Feltbower RG, Svensson J, et al. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetologia. 2007;50(12):2439–42. https://doi.org/10.1007/s00125-007-0824-8.

    Article  CAS  PubMed  Google Scholar 

  7. Steck AK, Dong F, Frohnert BI, Waugh K, Hoffman M, Norris JM, et al. Predicting progression to diabetes in islet autoantibody positive children. J Autoimmun. 2018;90:59–63. https://doi.org/10.1016/j.jaut.2018.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barker JM, Barriga KJ, Yu L, Miao D, Erlich HA, Norris JM, et al. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab. 2004;89(8):3896–902. https://doi.org/10.1210/jc.2003-031887.

    Article  CAS  PubMed  Google Scholar 

  9. Takeda H, Kawasaki E, Shimizu I, Konoue E, Fujiyama M, Murao S, et al. Clinical, autoimmune, and genetic characteristics of adult-onset diabetic patients with GAD autoantibodies in Japan (Ehime Study). Diabetes Care. 2002;25(6):995–1001. https://doi.org/10.2337/diacare.25.6.995.

    Article  PubMed  Google Scholar 

  10. Matsuura N, Yokota Y, Kazahari K, Sasaki N, Amemiya S, Ito Y, et al. The Japanese Study Group of Insulin Therapy for Childhood and Adolescent Diabetes (JSGIT): initial aims and impact of the family history of type 1 diabetes mellitus in Japanese children. Pediatr Diabetes. 2001;2(4):160–9. https://doi.org/10.1034/j.1399-5448.2001.20404.x.

    Article  CAS  PubMed  Google Scholar 

  11. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon). 2014;42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007.

    Article  Google Scholar 

  12. Kawasaki E, Maruyama T, Imagawa A, Awata T, Ikegami H, Uchigata Y, et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the research of fulminant and acute-onset type 1 diabetes mellitus. J Diabetes Investig. 2014;5(1):115–8. https://doi.org/10.1111/jdi.12119.

    Article  CAS  PubMed  Google Scholar 

  13. Nishimura A, Matsumura K, Kikuno S, Nagasawa K, Okubo M, Mori Y, et al. Slowly progressive type 1 diabetes mellitus: current knowledge and future perspectives. Diabetes Metab Syndr Obes. 2019;12:2461–77. https://doi.org/10.2147/DMSO.S191007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imagawa A, Hanafusa T, Awata T, Ikegami H, Uchigata Y, Osawa H, et al. Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: New diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Investig. 2012;3(6):536–69. https://doi.org/10.1111/jdi.12024.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi T, Tamemoto K, Nakanishi K, Kato N, Okubo M, Kajio H, et al. Immunogenetic and clinical characterization of slowly progressive IDDM. Diabetes Care. 1993;16(5):780–8. https://doi.org/10.2337/diacare.16.5.780.

    Article  CAS  PubMed  Google Scholar 

  16. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med. 2000;342(5):301–7. https://doi.org/10.1056/NEJM200002033420501.

    Article  CAS  PubMed  Google Scholar 

  17. Imagawa A, Hanafusa T, Uchigata Y, Kanatsuka A, Kawasaki E, Kobayashi T, et al. Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetes Care. 2003;26(8):2345–52. https://doi.org/10.2337/diacare.26.8.2345.

    Article  PubMed  Google Scholar 

  18. Murao S, Makino H, Kaino Y, Konoue E, Ohashi J, Kida K, et al. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients. Diabetes. 2004;53(10):2684–90. https://doi.org/10.2337/diabetes.53.10.2684.

    Article  CAS  PubMed  Google Scholar 

  19. Sugihara S, Ogata T, Kawamura T, Urakami T, Takemoto K, Kikuchi N, et al. HLA-class II and class I genotypes among Japanese children with Type 1A diabetes and their families. Pediatr Diabetes. 2012;13(1):33–44. https://doi.org/10.1111/j.1399-5448.2011.00833.x.

    Article  PubMed  Google Scholar 

  20. Moritani M, Yokota I, Tsubouchi K, Takaya R, Takemoto K, Minamitani K, et al. Identification of INS and KCNJ11 gene mutations in type 1B diabetes in Japanese children with onset of diabetes before 5 years of age. Pediatr Diabetes. 2013;14(2):112–20. https://doi.org/10.1111/j.1399-5448.2012.00917.x.

    Article  CAS  PubMed  Google Scholar 

  21. Okuno M, Ayabe T, Yokota I, Musha I, Shiga K, Kikuchi T, et al. Protein-altering variants of PTPN2 in childhood-onset Type 1A diabetes. Diabet Med. 2018;35(3):376–80. https://doi.org/10.1111/dme.13566.

    Article  CAS  PubMed  Google Scholar 

  22. Oikawa Y, Tanaka H, Uchida J, Atsumi Y, Osawa M, Katsuki T, et al. Slowly progressive insulin-dependent (type 1) diabetes positive for anti-GAD antibody ELISA test may be strongly associated with a future insulin-dependent state. Endocr J. 2017;64(2):163–70. https://doi.org/10.1507/endocrj.EJ16-0328.

    Article  CAS  PubMed  Google Scholar 

  23. Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T. Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract. 2007;77(Suppl 1):S116–21. https://doi.org/10.1016/j.diabres.2007.01.044.

    Article  CAS  PubMed  Google Scholar 

  24. Kawabata Y, Nishida N, Awata T, Kawasaki E, Imagawa A, Shimada A, et al. Genome-wide association study confirming a strong effect of hla and identifying variants in CSAD/lnc-ITGB7-1 on chromosome 12q13.13 associated with susceptibility to fulminant type 1 diabetes. Diabetes. 2019;68(3):665–75. https://doi.org/10.2337/db18-0314.

    Article  CAS  PubMed  Google Scholar 

  25. Shields BM, McDonald TJ, Oram R, Hill A, Hudson M, Leete P, et al. C-peptide decline in type 1 diabetes has two phases: an initial exponential fall and a subsequent stable phase. Diabetes Care. 2018;41(7):1486–92. https://doi.org/10.2337/dc18-0465.

    Article  CAS  PubMed  Google Scholar 

  26. Steck AK, Liu X, Krischer JP, Haller MJ, Veijola R, Lundgren M, et al. Factors associated with decline of C-peptide in a cohort of young children diagnosed with type 1 diabetes. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa715.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81. https://doi.org/10.1016/j.jbi.2008.08.010.

    Article  PubMed  Google Scholar 

  28. Obeid JS, McGraw CA, Minor BL, Conde JG, Pawluk R, Lin M, et al. Procurement of shared data instruments for Research Electronic Data Capture (REDCap). J Biomed Inform. 2013;46(2):259–65. https://doi.org/10.1016/j.jbi.2012.10.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following researchers for their support during clinical data collection: Nobuyuki Takahashi, Keisuke Ueno, Aiko Terakawa, Noriko Kodani, Hidekatsu Yanai, Hisayuki, Katsuyama, and Akiko Shima from National Center for Global Health and Medicine; Jungo Terasaki, Yuko Mishiba, Norio Kanatsuna, and Akiko Irie from Osaka Medical and Pharmaceutical University; Shinsuke Noso, Junko Toma, and Yayoi Kibayashi from Kindai University; Hiromi Iwahashi, Sho Yoneda, Harutoshi Ozawa, and Shingo Fujita from Osaka University; Susumu Kurihara from Saitama Medical University; Ryoichi Kawamura and Hiroshi Onuma from Ehime University; Satoshi Akazawa and Ichiro Horie from Nagasaki University; Shoichiro Tanaka, Masahiro Kaneshige, Soichi Takizawa from Yamanashi University; Ken Yajima from Tachikawa Hospital; Yasuhisa Fujii from Takanoko Hospital; Shiori Kondo from Matsuyama Red Cross Hospital; Satoshi Murao from Takamatsu Hospital; Kyoko Kohashi from Showa University; Aira Uchida from Shin-Koga Hospital. We would also like to thank Tomoko Iwamoto from the National Center for Global Health and Medicine for the management of the collected data.

Funding

This study was supported by a grant from the National Center for Global Health and Medicine (19A1008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kajio.

Ethics declarations

Conflict of interest

Daisuke Chujo received honorarium for lectures from Eli Lilly and Company; research funding from Novo Nordisk Pharma Ltd., and Sanofi K.K.; Akihisa Imagawa received honorarium for lectures from Astellas Pharma Inc.; clinical commissioned/joint research grant from Astra Zeneca, Soiken Inc., Taiho Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Merck KGaA, and Parexel International Inc.; research grant from Shionogi Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Takeda Pharmaceutical Company, and Ono Pharmaceutical Co., Ltd.; Norio Abiru received honorarium for lectures from Novo Nordisk Pharma Ltd., Astellas Pharma Inc., and Eli Lilly and Company; research funding from Ono Pharmaceutical Co. Ltd., Bristol Myers Squibb, Taisho Pharmaceutical Co., Ltd., and Astellas Pharma Inc.; Takuya Awata received honorarium for lectures from Astellas Pharma Inc.; Hiroshi Ikegami received honorarium for lectures from Astellas Pharma Inc., Eli Lilly and Company, MSD K.K., Novo Nordisk Pharma Ltd., Novartis Pharma K.K., Sumitomo Dainippon Pharma Co., Ltd., and Terumo Corporation; donations from Abbott Japan Co., Ltd., LifeScan Japan K.K., Mitsubishi Tanabe Pharma Corporation, Novo Nordisk Pharma Ltd., Otsuka Pharmaceutical Co., Ltd., Sanofi K.K., Sumitomo Dainippon Pharma Co., Ltd., Taisho Pharmaceutical Co., Ltd., Takeda Pharmaceutical Company. Akira Shimada received honorarium for lectures from Novo Nordisk Pharma Ltd., Eli Lilly and Company, and Sanofi K.K.; Other authors have no conflict of interest to declare.

Human rights statement and informed consent

All procedures performed were in accordance with the 1964 Helsinki Declaration and its later amendments and the “ethical guidelines for human genome/gene analysis research” published by the Ministry of Health, Labor, and Welfare of Japan. The study protocol was approved by the ethical committee of the National Center for Global Health and Medicine and other collaborating institutes (ID: NCGM-A-000138-13). Written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chujo, D., Imagawa, A., Yasuda, K. et al. Japanese Type 1 Diabetes Database Study (TIDE-J): rationale and study design. Diabetol Int 13, 288–294 (2022). https://doi.org/10.1007/s13340-021-00541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-021-00541-2

Keywords

Navigation