Skip to main content

Advertisement

Log in

Evaluation of some oxidative markers in diabetes and diabetic retinopathy

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Aims

Diabetes mellitus and diabetic retinopathy (DR) are major public health concerns globally. Oxidative stress plays a central role in the pathogenesis of diabetes and DR. The aim of this study was to investigate the association of malondialdehyde, uric acid and bilirubin with diabetes and diabetic retinopathy development.

Methods

This study was conducted on 110 diabetics (with and without retinopathy). Beside 40 healthy individuals as a control group. The level of three markers (malondialdehyde, uric acid and bilirubin) was estimated in the studied groups. Receiver operating characteristic analysis and a logistic regression model was performed.

Results

The present study revealed significantly higher uric acid and malondialdehyde levels, while bilirubin showed significantly lower levels in diabetics compared to control and similarly in diabetic retinopathy compared to those without DR. Furthermore, combination of the three markers increased the accuracy and effect size for differentiation between diabetes with and without DR. In addition, higher levels of uric acid and malondialdehyde were associated with risk of diabetes and DR development.

Conclusion

This study concluded that higher levels of uric acid and malondialdehyde were associated with increase in the risk of diabetes and DR development, while bilirubin wasn’t associated with decreasing the risk of diabetes or DR. However, the combination of malondialdehyde, uric acid and bilirubin may be a valuable addition to the current options for the prognosis of DR. In addition, malondialdehyde may be independent predictor of diabetes and DR as well as uric acid may be used as independent biomarker to predict the risk of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurup R, Ansari AA, Singh J. Review A review on diabetic foot challenges in Guyanese perspective. Diabetes Metabol Syndrome Clin Rese Rev. 2019;13(2):905–12. https://doi.org/10.1016/j.dsx.2018.12.010.

    Article  Google Scholar 

  2. Abbasa SAN, Razaa ST, Mird SS, et al. Association of variants rs7903146 and rs290487 of TCF7L2 gene with diabetic nephropathy and co-morbidities (hypertension and dyslipidemia) in type 2 diabetes mellitus. Meta Gene. 2019;20:1–7. https://doi.org/10.1016/j.mgene.2019.100561.

    Article  Google Scholar 

  3. Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M, et al. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med. 2016;9(9):825–31. https://doi.org/10.1016/j.apjtm.2016.07.001.

    Article  CAS  PubMed  Google Scholar 

  4. Kaur N, Vanita V. Association analysis of PPARγ (p.Pro12Ala) polymorphism with type 2 diabetic retinopathy in patients from north India. Ophthalm Genet. 2017;38(3):217–21. https://doi.org/10.1080/13816810.2016.1193879.

    Article  CAS  Google Scholar 

  5. Frazaoa LB, Theera-Umpona N, Auephanwiriyakul S. Diagnosis of diabetic retinopathy based on holistic texture and local retinal features. Inf Sci. 2019;475:44–66. https://doi.org/10.1016/j.ins.2018.09.064.

    Article  Google Scholar 

  6. Korany MA, Sonbol A, Elgouhary SM. Omentin-1 and diabetic retinopathy in type 2 diabetic patients. Alexandria J Med. 2018;54:323–6. https://doi.org/10.1016/j.ajme.2018.04.003.

    Article  Google Scholar 

  7. Cecilia OM, José Alberto CG, José NP, et al. Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res. 2019;2019:8562408. https://doi.org/10.1155/2019/8562408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fonseca I. Malondialdehyde as a biomarker in kidney transplantation. Biomarkers in disease: methods, discoveries and applications. Biomark Kidney Dis. 2015;1:1–25. https://doi.org/10.1007/978-94-007-7743-9.

    Article  Google Scholar 

  9. Ren Y, Gao L, Guo X, et al. Interactive effect of serum uric acid and total bilirubin for micro-vascular disease of type 2 diabetes in China. J Diabetes Compl. 2018;32(11):1000–5. https://doi.org/10.1016/j.jdiacomp.2018.09.002.

    Article  Google Scholar 

  10. Manickam S, Arun P, Petchiappan V, et al. Is serum uric acid an added risk factor for micro-vascular complications of diabetes mellitus?—a prospective study. Int J Contemp Med Res. 2019;6(7):30–3. https://doi.org/10.21276/ijcmr.2019.6.7.20.

    Article  Google Scholar 

  11. Zhu B, Wu X, Ning K, et al. The negative relationship between bilirubin level and diabetic retinopathy: a meta analysis. PLoS ONE. 2016;11(8):1–16. https://doi.org/10.1371/journal.pone.0161649.

    Article  CAS  Google Scholar 

  12. Prabhavathi K, Kunder M, Shashidhar KN, et al. Serum total bilirubin levels in diabetic retinopathy—a case control study. IOSR J Pharm. 2013;4(8):1–6. https://doi.org/10.9790/3013-04080106.

    Article  Google Scholar 

  13. Abraham EC, Huff TA, Cope ND, et al. Determinations of the glycosylated hemoglobins (HbA1) with a new micro-column procedure. Diabetes. 1978;27(9):931–7. https://doi.org/10.2337/diab.27.9.931.

    Article  CAS  PubMed  Google Scholar 

  14. Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis. 2003;41(1):1–12. https://doi.org/10.1053/ajkd.2003.50007.

    Article  PubMed  Google Scholar 

  15. Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta. 1978;90(1):37–433. https://doi.org/10.3995/jstroke.1.313.

    Article  CAS  PubMed  Google Scholar 

  16. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31. https://doi.org/10.1016/0076-6879(90)86135-i.

    Article  CAS  PubMed  Google Scholar 

  17. Fossati P, Prencipe L, Berti G. Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem. 1980;26(2):227–31. https://doi.org/10.1093/clinchem/26.2.227.

    Article  CAS  PubMed  Google Scholar 

  18. Jendrassik L, Grof P. Colorimetric method of determination of bilirubin. Biochem Z. 1938;297:81–2.

    CAS  Google Scholar 

  19. Salgado JF. Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s rpb, odds-ratio, and natural log odds-ratio: two conversion tables. Eur J Psychol Appl Legal Context. 2018;10(1):35–47. https://doi.org/10.5093/ejpalc2018a5.

    Article  Google Scholar 

  20. Cohen J. A power primer. Psychol Bull. 1992;112:155–9. https://doi.org/10.1037//0033-2909.112.1.155.

    Article  CAS  PubMed  Google Scholar 

  21. Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77. https://doi.org/10.1111/ceo.12696.

    Article  PubMed  Google Scholar 

  22. Ahsan H. Diabetic retinopathy-biomolecules and multiple pathophysiology. Diabetes Metab Syndr. 2015;9:51–4. https://doi.org/10.1016/j.dsx.2014.09.011.

    Article  PubMed  Google Scholar 

  23. Du Y, Veenstra A, Palczewski K, et al. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci. 2013;110(41):16586–91. https://doi.org/10.1073/pnas.1314575110.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dave A, Kalra P, Gowda BR, et al. Association of bilirubin and malondialdehyde levels with retinopathy in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2015;19(3):373–7. https://doi.org/10.4103/2230-8210.152777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tseng ST, Chou ST, Low BH, et al. Risk factors associated with diabetic retinopathy onset and progression in diabetes patients: a Taiwanese cohort study. Int J Clin Exp Med. 2015;8(11):21507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Yang J, Tao L, et al. Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: a cross-sectional study of 13 473 patients with type 2 diabetes mellitus in mainland China. BMJ Open. 2017;7(9):e016280. https://doi.org/10.1136/bmjopen-2017-016280.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jihan AM, Seham MA, Hamdia EA, et al. Relationship between diabetic retinopathy and methylenetetrahydrofolate reductase gene polymorphism. Egypt J Hosp Med. 2017;67(2):628–34. https://doi.org/10.12816/0037814.

    Article  Google Scholar 

  28. Chutani A, Pande S. Correlation of serum creatinine and urea with glycemic index and duration of diabetes in Type 1 and Type 2 diabetes mellitus: a comparative study. Natl J Physiol Pharm Pharmacol. 2017;7(9):914–9. https://doi.org/10.5455/njppp.2017.7.0515606052017.

    Article  CAS  Google Scholar 

  29. Elhefnawy KA, Elsayed AM. Prevalence of diabetic kidney disease in patients with type 2 diabetes mellitus. Egypt J Internal Med. 2019;31(2):149–54. https://doi.org/10.4103/ejim.ejim_113_18.

    Article  Google Scholar 

  30. Kaewput W, Thongprayoon C, Rangsin R, et al. Associations of renal function with diabetic retinopathy and visual impairment in type 2 diabetes: a multicenter nationwide cross-sectional study. World J Nephrol. 2019;8(2):33–43. https://doi.org/10.5527/wjn.v8.i2.33.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kawasaki R, Kitano S, Sato Y, et al. Factors associated with non-proliferative diabetic retinopathy in patients with type 1 and type 2 diabetes: the Japan Diabetes Complication and its Prevention prospective study (JDCP study 4). Diabetol Int. 2019;10(1):3–11. https://doi.org/10.1007/s13340-018-0357-z.

    Article  PubMed  Google Scholar 

  32. Nair A, Nair BJ. Comparative analysis of the oxidative stress and antioxidant status in type II diabetics and nondiabetics: a biochemical study. J Oral Maxillofac Pathol. 2017;21(3):394–401. https://doi.org/10.4103/jomfp.JOMFP_56_16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Al-Duais MA, Sakran MI, Shalaby KA, et al. Diagnostic value of serum adenosine deaminase in type II Saudi diabetic patients. Adv Diabetes Endocrinol. 2015;1(1):5. https://doi.org/10.13188/2475-5591.1000001.

    Article  Google Scholar 

  34. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J. 2016;24(5):547–53. https://doi.org/10.1016/j.jsps.2015.03.013.

    Article  PubMed  Google Scholar 

  35. Dos Santos JM, Tewari S, Mendes RH. The role of oxidative stress in the development of diabetes mellitus and its complications. J Diabetes Res. 2019;2019:4189813. https://doi.org/10.1155/2019/4189813.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xiong Q, Liu J, Xu Y. Effects of uric acid on diabetes mellitus and its chronic complications. Int J Endocrinol. 2019;2019:9691345. https://doi.org/10.1155/2019/9691345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen YY, Kao TW, Yang HF, et al. The association of uric acid with the risk of metabolic syndrome, arterial hypertension or diabetes in young subjects—an observational study. Clin Chim Acta. 2018;478:68–73. https://doi.org/10.1016/j.cca.2017.12.038.

    Article  CAS  PubMed  Google Scholar 

  38. Chang JB, Chen YL, Hung YJ, et al. The role of uric acid for predicting future metabolic syndrome and type 2 diabetes in older people. J Nutr Health Aging. 2017;21(3):329–35. https://doi.org/10.1007/s12603-016-0749-3.

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Bi Y, Xu M, et al. Serum uric acid associates with the incidence of type 2 diabetes in a prospective cohort of middle-aged and elderly Chinese. Endocrine. 2011;40(1):109–16. https://doi.org/10.1007/s12020-011-9449-2.

    Article  CAS  PubMed  Google Scholar 

  40. Haque T, Rahman S, Islam S, et al. Assessment of the relationship between serum uric acid and glucose levels in healthy, prediabetic and diabetic individuals. Diabetol Metab Syndr. 2019;11(1):49. https://doi.org/10.1186/s13098-019-0446-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheriyath P, Gorrepati VS, Peters I, et al. High total bilirubin as a protective factor for diabetes mellitus: an analysis of NHANES data from 1999–2006. J Clin Med Res. 2010;2(5):201–6. https://doi.org/10.4021/jocmr425w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang M, Ni C, Chang B, et al. Association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2019;152:23–8. https://doi.org/10.1016/j.diabres.2019.04.033.

    Article  CAS  PubMed  Google Scholar 

  43. Altoum AEA, Osman AL, Babker AM. Correlation of oxidative stress markers malondialdehyde (MDA), antioxidant vitamins A, E, and C with glycated hemoglobin (HBA1C) levels in Type 2 diabetes mellitus. Asian J Pharm Clin Res. 2018;11(5):281–3. https://doi.org/10.22159/ajpcr.2018.v11i5.24548.

    Article  CAS  Google Scholar 

  44. Shaikh S, Memon A, Ata MA, et al. Association of serum bilirubin, serum malondialdehyde and glycemic control with retinopathy in type 2 diabetic subjects. Int J Diabetes Endocrinol. 2017;2(1):10–4. https://doi.org/10.11648/j.ijde.20170201.13.

    Article  Google Scholar 

  45. Zarei M, Farahnak Z, Hosseinzadeh-Attar MJ, et al. Lipid peroxidation and antioxidant enzymes activity in controlled and uncontrolled Type 2 diabetic patients. ARYA Atheroscler. 2016;12(3):118–23.

    PubMed  PubMed Central  Google Scholar 

  46. Fadhel AA, Yousif AK. Correlation of glycated hemoglobin (Hba1c) and serum uric acid in type-2 diabetic patients. Indian J Public Health Res Dev. 2019;10(5):1250–4. https://doi.org/10.5958/0976-5506.2019.01167.7.

    Article  Google Scholar 

  47. Wei F, Chang B, Yang X, et al. Serum uric acid levels were dynamically coupled with hemoglobin A1c in the development of type 2 diabetes. Sci Rep. 2016;6(1):1–9. https://doi.org/10.1038/srep28549.

    Article  CAS  Google Scholar 

  48. Karuppannasamy D, Venkatesan R, Thankappan L, et al. Inverse association between serum bilirubin levels and retinopathy in patients with type 2 diabetes mellitus. J Clin Diagn Res. 2017;11(2):NC09–NC12. https://doi.org/10.7860/JCDR/2017/24259.9452.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Farasat T, Sharif S, Manzoor F, et al. Serum bilirubin is significantly associated with HbA1C in type 2 diabetic subjects. Endocrinol Metab Inter J. 2017;5(6):338–41. https://doi.org/10.15406/emij.2017.05.00142.

    Article  Google Scholar 

  50. Shrivastav C, Parekh PA, Kumar GI. A correlative study of body mass index with oxidative stress parameters (serum uric acid and serum malondialdihyde) in essential hypertension. Int J Res Med Sci. 2019;7(4):1252–6. https://doi.org/10.18203/2320-6012.ijrms20191334.

    Article  Google Scholar 

  51. Ferreira TDS, Fernandes JFR, Araújo LDS, et al. Serum uric acid levels are associated with cardiometabolic risk factors in healthy young and middle-aged adults. Arq Bras Cardiol. 2018;111(6):833–40. https://doi.org/10.5935/abc.20180197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. An H, Du X, Huang X, et al. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl Psychiatry. 2018;8(1):1–7. https://doi.org/10.1038/s41398-018-0303-7.

    Article  CAS  Google Scholar 

  53. Tabatabaei-Malazy O, Khodaeian M, Bitarafan F, et al. Polymorphisms of antioxidant genes as a target for diabetes management. Int J Mol Cell Med. 2017;6(3):135–47. https://doi.org/10.22088/acadpub.BUMS.6.3.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu SS, Kor CT, Chen TY, et al. Relationships between serum uric acid, malondialdehyde levels, and carotid intima-media thickness in the patients with metabolic syndrome. Oxidat Med Cell Longev. 2019;2019:6859757. https://doi.org/10.1155/2019/6859757.

    Article  CAS  Google Scholar 

  55. Dulull N, Kwa F, Osman N, et al. Recent advances in the management of diabetic retinopathy. Drug Discov Today. 2019;24(8):1499–509. https://doi.org/10.1016/j.drudis.2019.03.028.

    Article  PubMed  Google Scholar 

  56. Verma MK, Singh SP, Alam R, et al. Comparative study on MDA, SOD and HbA1c levels in patients of type 2 diabetes mellitus with retinopathy and without retinopathy. Int J Pharm Sci Res. 2016;7(10):4184–90. https://doi.org/10.13040/IJPSR.0975-8232.

    Article  CAS  Google Scholar 

  57. Inoguchi T, Sonoda N, Maeda Y. Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: a new aspect on old molecule. Diabetol Int. 2016;7(4):338–41. https://doi.org/10.1007/s13340-016-0288-5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu B, Wu X, Ning K, et al. The negative relationship between bilirubin level and diabetic retinopathy: a meta-analysis. PLoS ONE. 2016;11(8):e0161649. https://doi.org/10.1371/journal.pone.0161649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumawat M, Kharb S, Singh V, et al. Plasma malondialdehyde (MDA) and anti-oxidant status in diabetic retinopathy. J Indian Med Assoc. 2014;112(1):29–322. https://doi.org/10.1007/s12291-008-0035-1.

    Article  PubMed  Google Scholar 

  60. Kundu D, Mandal T, Mausumi N, et al. Oxidative stress in diabetic patients with retinopathy. Ann Afr Med. 2014;13(1):41–6. https://doi.org/10.4103/1596-3519.126951.

    Article  PubMed  Google Scholar 

  61. Sekioka R, Tanaka M, Nishimura T, et al. Serum total bilirubin concentration is negatively associated with increasing severity of retinopathy in patients with type 2 diabetes mellitus. J Diabetes Compl. 2015;29(2):218–21. https://doi.org/10.1016/j.jdiacomp.2014.12.002.

    Article  Google Scholar 

  62. Sekioka R, Tanaka M, Nishimura T, et al. Low serum total bilirubin concentration in patients with type 1 diabetes mellitus complicated by retinopathy and nephropathy. Diabetol Int. 2015;6(4):300–5. https://doi.org/10.1007/s13340-014-0201-z.

    Article  Google Scholar 

  63. Yasuda M, Kiyohara Y, Wang JJ, et al. High serum bilirubin levels and diabetic retinopathy: the Hisayama Study. Ophthalmology. 2011;118(7):1423–8. https://doi.org/10.1016/j.ophtha.2010.12.009.

    Article  PubMed  Google Scholar 

  64. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2(17):1–25. https://doi.org/10.1186/s40662-015-0026-2.

    Article  Google Scholar 

  65. Senthilvel V, Radhakrishnan R, Sathiyamoorthi R, et al. A study on finding influencing factors on diabetic retinopathy among diabetic patients using Multiple Regression approach. IOSR J Dent Med Sci. 2012;1(4):20–3. https://doi.org/10.9790/0853-0142023.

    Article  Google Scholar 

  66. Hoque S, Muttalib MA, Islam MI, et al. Evaluation of HbA1c level and other risk factors in diabetic retinopathy: a study of type 2 diabetic patients attending in a tertiary level hospital. KYAMC J. 2016;6(2):614–9. https://doi.org/10.3329/kyamcj.v6i2.33738.

    Article  Google Scholar 

  67. Magliah SF, Bardisi W, Al Attah M, et al. The prevalence and risk factors of diabetic retinopathy in selected primary care centers during the 3-year screening intervals. J Fam Med Prim Care. 2018;7(5):975–81.

    Google Scholar 

Download references

Acknowledgements

This work was granted by authors themselves. This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadeel Ahmed Shawki.

Ethics declarations

Conflict of interest

The Authors Hadeel Ahmed Shawki, Rasha Elzehery, Maha Shahin, Ekbal M.Abo-hashem, Magdy M. Youssef declared that they have no conflict of interest. The authors alone are responsible for the content and writing of this article.

Ethical approval

This study was ethically approved by Mansoura University Ethics Committee at the faculty of Science (Sci-ch-ph-2020-28) (10-5-2020).

Informed consent

An informed consent was obtained from all participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shawki, H.A., Elzehery, R., Shahin, M. et al. Evaluation of some oxidative markers in diabetes and diabetic retinopathy. Diabetol Int 12, 108–117 (2021). https://doi.org/10.1007/s13340-020-00450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-020-00450-w

Keywords

Navigation