Skip to main content

Advertisement

Log in

Salt and hypertension in diabetes

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Worldwide, the number of patients with diabetes is increasing. Adults with diabetes have a two- to threefold increased risk of heart attack and stroke, and diabetic nephropathy is a leading cause of end-stage renal failure. Salt sensitivity of blood pressure is reported to be elevated in patients with diabetes. Hyperinsulinemia, hyperglycemia, and an activated sympathetic nervous system play key roles in the genesis of salt-sensitive blood pressure in individuals who are obese and/or have type 2 diabetes. In this review, I summarize previous research performed to improve our understanding of the relationship between salt and hypertension in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuchi M, Imai Y, Imaizumi T, Ishimitsu T, Ito M, Ito S, Itoh H, Iwao H, Kai H, Kario K, Kashihara N, Kawano Y, Kim-Mitsuyama S, Kimura G, Kohara K, Komuro I, Kumagai H, Matsuura H, Miura K, Morishita R, Naruse M, Node K, Ohya Y, Rakugi H, Saito I, Saitoh S, Shimada K, Shimosawa T, Suzuki H, Tamura K, Tanahashi N, Tsuchihashi T, Uchiyama M, Ueda S, Umemura S. Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens Res. 2014;37(4):253–390.

    Article  PubMed  Google Scholar 

  2. Izzo R, de Simone G, Chinali M, Iaccarino G, Trimarco V, Rozza F, Giudice R, Trimarco B, De Luca N. Insufficient control of blood pressure and incident diabetes. Diabetes Care. 2009;32(5):845–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, Martin M. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321(9):580–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rocchini AP. Obesity hypertension, salt sensitivity and insulin resistance. Utr Metab Cardiovasc Dis. 2000;10(5):287–94.

  5. Law MR, Frost CD, Wald NJ. Dietary salt and blood pressure. J Hypertens Suppl. 1991;9(6):S37–41 (discussion S47–S49).

    Article  CAS  PubMed  Google Scholar 

  6. Kimura G, Frem GJ. Brenner BM Renal mechanisms of salt sensitivity in hypertension. Curr Opin Nephrol Hypertens. 1994;3(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Uzu T, Sakaguchi M, Yokomaku Y, Kume S, Kanasaki M, Isshiki K, Araki S, Sugiomoto T, Koya D, Haneda M, Kashiwagi A. Effects of high sodium intake and diuretics on the circadian rhythm of blood pressure in type 2 diabetic patients treated with an angiotensin II receptor blocker. Clin Exp Nephrol. 2009;13(4):300–6.

  8. Miller JZ, Weinberger MH, Daugherty SA, Fineberg NS, Christian JC, Grim CE. Heterogeneity of blood pressure response to dietary sodium restriction in normotensive adults. J Chronic Dis. 1987;40(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  9. Uzu T, Kimura G, Yamauchi A, Kanasaki M, Isshiki K, Araki S, Sugiomoto T, Nishio Y, Maegawa H, Koya D, Haneda M, Kashiwagi A. Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J Hypertens. 2006;24(8):1627–32.

    Article  CAS  PubMed  Google Scholar 

  10. Strazzullo P, Barbato A, Galletti F, Barba G, Siani A, Iacone R, D’Elia L, Russo O, Versiero M, Farinaro E, Cappuccio FP. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J Hypertens. 2006;24(8):1633–9.

    Article  CAS  PubMed  Google Scholar 

  11. Barbato A, Cappuccio FP, Folkerd EJ, Strazzullo P, Sampson B, Cook DG, Alberti KG. Metabolic syndrome and renal sodium handling in three ethnic groups living in England. Diabetologia. 2004;47(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  12. Rocchini AP, Katch V, Kveselis D, Moorehead C, Martin M, Lampman R, Gregory M. Insulin and renal sodium retention in obese adolescents. Hypertension. 1989;14(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  13. Tiwari S, Sharma N, Gill PS, Igarashi P, Kahn CR, Wade JB, Ecelbarger CM. Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci USA. 2008;105(17):6469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension. 1998;31(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  15. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96(10):3423–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, Marumo T, Yatomi Y, Geller DS, Tanaka H, Fujita T. Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011;17(5):573–80.

    Article  CAS  PubMed  Google Scholar 

  17. Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol. 2014;25(6):1148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P. Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab. 2000;26(Suppl 4):8–14.

    CAS  PubMed  Google Scholar 

  19. Ellis EN, Wiegmann TB, Savin VJ. Diminished glomerular capillary hydraulic conductivity precedes morphologic changes in experimental diabetes mellitus in the rat. Diabetes. 1992;41(9):1106–12.

    Article  CAS  PubMed  Google Scholar 

  20. Tomlanovich S, Deen WM, Jones HW 3rd, Schwartz HC, Myers BD. Functional nature of glomerular injury in progressive diabetic glomerulopathy. Diabetes. 1987;36(5):556–65.

    Article  CAS  PubMed  Google Scholar 

  21. Uzu T, Kazembe FS, Ishikawa K, Nakamura S, Inenaga T, Kimura G. High sodium sensitivity implicates nocturnal hypertension in essential hypertension. Hypertension. 1996;28(1):139–42.

    Article  CAS  PubMed  Google Scholar 

  22. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997;96(6):1859–62.

    Article  CAS  PubMed  Google Scholar 

  23. Anan F, Takahashi N, Ooie T, Yufu K, Saikawa T, Yoshimatsu H. Role of insulin resistance in nondipper essential hypertensive patients. Hypertens Res. 2003;26(9):669–76.

    Article  CAS  PubMed  Google Scholar 

  24. Flores L, Janka M, Canivell S, Jiménez A, Vidal J. Glucose abnormalities associated with impaired nocturnal fall in blood pressure in normotensive severely obese patients. Diabetes Res Clin Pract. 2013;101(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  25. Uzu T, Nakao K, Kume S, Araki H, Isshiki K, Araki S, Kawai H, Ugi S, Kashiwagi A, Maegawa H. High sodium intake is associated with masked hypertension in Japanese patients with type 2 diabetes and treated hypertension. Am J Hypertens. 2012;25(11):1170–4.

    Article  CAS  PubMed  Google Scholar 

  26. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr, Kostis JB, Kumanyika S, Lacy CR, Johnson KC, Folmar S, Cutler JA, TONE, Collaborative Research Group. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA. 1998;279:839–46.

    Article  CAS  PubMed  Google Scholar 

  27. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2017;40(Suppl 1).

  28. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K, MacIsaac RJ, Jerums G. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011;34(3):703–9. doi:10.2337/dc10-1723.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Araki S, Haneda M, Koya D, Kondo K, Tanaka S, Arima H, Kume S, Nakazawa J, Chin-Kanasaki M, Ugi S, Kawai H, Araki H, Uzu T, Maegawa H. Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol. 2015;10(12):2152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suckling RJ, He FJ, Markandu ND, MacGregor GA. Modest salt reduction lowers blood pressure and albumin excretion in impaired glucose tolerance and type 2 diabetes mellitus: a randomized double-blind trial. Hypertension. 2016;67(6):1189–95.

    CAS  PubMed  Google Scholar 

  31. Tanaka T, Nangaku M, Nishiyama A. The role of incretins in salt-sensitive hypertension: the potential use of dipeptidyl peptidase-4 inhibitors. Curr Opin Nephrol Hypertens. 2011;2(5):476–81.

    Article  Google Scholar 

  32. Hirata K, Kume S, Araki S, Sakaguchi M, Chin-Kanasaki M, Isshiki K, Sugimoto T, Nishiyama A, Koya D, Haneda M, Kashiwagi A, Uzu T. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem Biophys Res Commun. 2009;380(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sharkovska Y, Reichetzeder C, Alter M, Tsuprykov O, Bachmann S, Secher T, Klein T, Hocher B. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens. 2014;32(11):2211–23.

    Article  CAS  PubMed  Google Scholar 

  34. Nilsson PM, Diez J. DPP-4 inhibition and blood pressure lowering in perspective. J Hypertens. 2016;34(2):184–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sufiun A, Rafiq K, Fujisawa Y, Rahman A, Mori H, Nakano D, Kobori H, Ohmori K, Masaki T, Kohno M, Nishiyama A. Effect of dipeptidyl peptidase-4 inhibition on circadian blood pressure during the development of salt-dependent hypertension in rats. Hypertens Res. 2015;38(4):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Zhong J, Lin H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–49.

    Article  CAS  PubMed  Google Scholar 

  37. Meier JJ, Rosenstock J, Hincelin-Méry A, Roy-Duval C, Delfolie A, Coester HV, Menge BA, Forst T, Kapitza C. Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on optimized insulin glargine with or without metformin: a randomized. Open-label trial. Diabetes Care. 2015;38(7):1263–73.

    Article  CAS  PubMed  Google Scholar 

  38. Kimura G. Diuretic action of sodium–glucose cotransporter 2 inhibitors and its importance in the management of heart failure. Circ J. 2016;80(11):2277–81.

  39. Greger R, Velázquez H. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int. 1987;31(2):590–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kimura G. Importance of inhibiting sodium–glucose cotransporter and its compelling indication in type 2 diabetes: pathophysiological hypothesis. J Am Soc Hypertens. 2016;10(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  41. Pessoa TD, Campos LC, Carraro-Lacroix L, Girardi AC, Malnic G. Functional role of glucose metabolism, osmotic stress, and sodium–glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol. 2014;25(9):2028–39. doi:10.1681/ASN.2013060588 (Epub 2014 Mar 20).

  42. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  43. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B, EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Uzu.

Ethics declarations

Conflict of interest

Author TU received research grants from Astellas Pharma Inc., MSD K.K., Nippon Boehringer Ingelheim Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Daiichi Sankyo Company Limited, Shionogi & Co., Ltd., and Takeda Pharmaceutical Company Ltd. Author TU received lecture fees from Kyowa Hakko Kirin Co. and Nippon Boehringer Ingelheim Co., Ltd.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzu, T. Salt and hypertension in diabetes. Diabetol Int 8, 154–159 (2017). https://doi.org/10.1007/s13340-017-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-017-0305-3

Keywords

Navigation