Skip to main content
Log in

The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Endothelial dysfunction and tubulointerstitial fibrosis are characteristics of diabetic kidneys. Recent evidence has suggested that the diabetic kidney is associated with dipeptidyl peptidase (DPP)-4 overexpression in endothelial cells. Several insults can induce endothelial cells to alter their phenotype into a mesenchymal-like phenotype via endothelial–mesenchymal transition (EndMT), which plays pivotal roles in tissue fibrosis. We have recently revealed the fibrogenic role of DPP-4 through the induction of EndMT in diabetic kidneys. This review mainly focuses on the biological and pathological significance of DPP-4 overexpression in endothelial cells through the mechanisms of endothelial homeostasis defects, EndMT, and kidney fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pinzani M. Welcome to fibrogenesis and tissue repair. Fibrogenesis Tissue Repair. 2008;1:1. doi:10.1186/1755-1536-1-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. doi:10.1002/path.2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 2010;21:1819–34. doi:10.1681/ASN.2010080793.

    Article  CAS  PubMed  Google Scholar 

  4. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6:643–56. doi:10.1038/nrneph.2010.120.

    Article  PubMed  Google Scholar 

  5. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000;15:290–301.

    Article  CAS  PubMed  Google Scholar 

  6. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–82. doi:10.1038/nrm2297.

    Article  CAS  PubMed  Google Scholar 

  7. Medici D, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400–6. doi:10.1038/nm.2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J. 2011;437:515–20. doi:10.1042/BJ20101500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65:599–608. doi:10.1016/j.cardiores.2004.10.036.

    Article  CAS  PubMed  Google Scholar 

  10. Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341–7. doi:10.1038/370341a0.

    Article  CAS  PubMed  Google Scholar 

  11. De Meester I, Korom S, Van Damme J, Scharpe S. CD26, let it cut or cut it down. Immunol Today. 1999;20:367–75.

    Article  PubMed  Google Scholar 

  12. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35:992–1019. doi:10.1210/er.2014-1035.

    Article  CAS  PubMed  Google Scholar 

  13. Chien CH, et al. One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem. 2004;279:52338–45. doi:10.1074/jbc.M406185200.

    Article  CAS  PubMed  Google Scholar 

  14. Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40:209–94. doi:10.1080/713609354.

    Article  CAS  PubMed  Google Scholar 

  15. Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993;261:466–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–8. doi:10.1038/nrc2228.

    Article  CAS  PubMed  Google Scholar 

  17. Lu G, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–31. doi:10.1038/nature12328.

    Article  CAS  PubMed  Google Scholar 

  18. Kahne T, et al. Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int J Mol Med. 1999;4:3–15.

    CAS  PubMed  Google Scholar 

  19. Boerrigter G, Costello-Boerrigter LC, Harty GJ, Lapp H, Burnett JC Jr. Des-serine-proline brain natriuretic peptide 3-32 in cardiorenal regulation. Am J Physiol Regul Integr Comp Physiol. 2007;292:R897–901. doi:10.1152/ajpregu.00569.2006.

    Article  CAS  PubMed  Google Scholar 

  20. Brandt I, et al. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem. 2006;52:82–7. doi:10.1373/clinchem.2005.057638.

    Article  CAS  PubMed  Google Scholar 

  21. Mentlein R. Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.

  22. Marchetti C, et al. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia. 2012;55:236–44. doi:10.1007/s00125-011-2213-6.

    Article  CAS  PubMed  Google Scholar 

  23. Kirby M, Yu DM, O’Connor S, Gorrell MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond). 2010;118:31–41. doi:10.1042/CS20090047.

    Article  CAS  Google Scholar 

  24. Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001;54:249–64.

    Article  CAS  PubMed  Google Scholar 

  25. Broxmeyer HE, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18:1786–96. doi:10.1038/nm.2991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferreira L, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediat Inflamm. 2010;2010:592760. doi:10.1155/2010/592760.

    Article  Google Scholar 

  27. Lu HY, et al. Dipeptidyl peptidase-4 inhibitor decreases abdominal aortic aneurysm formation through GLP-1-dependent monocytic activity in mice. PLoS One. 2015;10:e0121077. doi:10.1371/journal.pone.0121077.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.

    Article  CAS  PubMed  Google Scholar 

  29. Shah Z, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–49. doi:10.1161/CIRCULATIONAHA.111.041418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang CY, et al. Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. Br J Pharmacol. 2012;167:1506–19. doi:10.1111/j.1476-5381.2012.02102.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cernea S, Raz I. Therapy in the early stage: incretins. Diabetes Care. 2011;34(Suppl 2):S264–71. doi:10.2337/dc11-s223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bostick B, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism. 2014;63:1000–11. doi:10.1016/j.metabol.2014.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirakawa H, et al. A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice. PLoS One. 2015;10:e0119360. doi:10.1371/journal.pone.0119360.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaji K, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2013;. doi:10.1007/s00535-013-0783-4.

    Google Scholar 

  35. Gao C, Huang W, Kanasaki K, Xu Y. The role of ubiquitination and sumoylation in diabetic nephropathy. Biomed Res Int. 2014;2014:160692. doi:10.1155/2014/160692.

    PubMed  PubMed Central  Google Scholar 

  36. Sun AL, et al. Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diabetes Vasc Dis Res. 2012;9:301–8. doi:10.1177/1479164111434318.

    Article  Google Scholar 

  37. Stefanovic V, et al. Interferon-gamma induces dipeptidylpeptidase IV expression in human glomerular epithelial cells. Immunology. 1993;80:465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang J, et al. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci. 2007;81:272–9. doi:10.1016/j.lfs.2007.04.040.

    Article  CAS  PubMed  Google Scholar 

  39. Panchapakesan U, Mather A, Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease. Clin Sci (Lond). 2013;124:17–26. doi:10.1042/CS20120167.

    Article  CAS  Google Scholar 

  40. Mitic B, Lazarevic G, Vlahovic P, Rajic M, Stefanovic V. Diagnostic value of the aminopeptidase N,N-acetyl-beta-d-glucosaminidase and dipeptidylpeptidase IV in evaluating tubular dysfunction in patients with glomerulopathies. Ren Fail. 2008;30:896–903. doi:10.1080/08860220802359048.

    Article  CAS  PubMed  Google Scholar 

  41. Mega C, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res. 2011;2011:162092. doi:10.1155/2011/162092.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu WJ, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340:248–55. doi:10.1124/jpet.111.186866.

    Article  CAS  PubMed  Google Scholar 

  43. GangadharanKomala M, Gross S, Zaky A, Pollock C, Panchapakesan U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology (Carlton). 2016;21:423–31. doi:10.1111/nep.12618.

    Article  CAS  Google Scholar 

  44. Alter ML, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36:119–30. doi:10.1159/000341487.

    Article  CAS  PubMed  Google Scholar 

  45. Groop PH, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36:3460–8. doi:10.2337/dc13-0323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Min HS, et al. Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction. Lab Invest. 2014;94:598–607. doi:10.1038/labinvest.2014.50.

    Article  CAS  PubMed  Google Scholar 

  47. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77:1–6.

    Article  CAS  PubMed  Google Scholar 

  48. Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial–mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074–80. doi:10.1016/j.ajpath.2011.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19:2282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xavier S, et al. Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial–mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol. 2015;26:817–29. doi:10.1681/ASN.2013101137.

    Article  CAS  PubMed  Google Scholar 

  51. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zeisberg EM, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.

    Article  CAS  PubMed  Google Scholar 

  53. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99:1375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu X, et al. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circ Res. 2015;116:857–66. doi:10.1161/CIRCRESAHA.116.305629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu X, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105:279–91. doi:10.1093/cvr/cvv015.

    Article  PubMed  Google Scholar 

  56. Xu X, et al. Snail is a direct target of hypoxia-inducible factor 1alpha (HIF1alpha) in hypoxia-induced endothelial to mesenchymal transition of human coronary endothelial cells. J Biol Chem. 2015;290:16653–64. doi:10.1074/jbc.M115.636944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Charytan DM, et al. Increased concentration of circulating angiogenesis and nitric oxide inhibitors induces endothelial to mesenchymal transition and myocardial fibrosis in patients with chronic kidney disease. Int J Cardiol. 2014;176:99–109. doi:10.1016/j.ijcard.2014.06.062.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zeisberg M, Zeisberg EM. Evidence for antifibrotic incretin-independent effects of the DPP-4 inhibitor linagliptin. Kidney Int. 2015;88:429–31. doi:10.1038/ki.2015.175.

    Article  CAS  PubMed  Google Scholar 

  59. Shi S, et al. Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition. Kidney Int. 2015;88:479–89. doi:10.1038/ki.2015.103.

    Article  CAS  PubMed  Google Scholar 

  60. Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol. 2011;23:547–53. doi:10.1016/j.ceb.2011.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pozzi A, Zent R. Integrins: sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrol. 2003;94:e77–84. doi:10.1159/000072025.

  62. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  CAS  PubMed  Google Scholar 

  63. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000;275:21785–8. doi:10.1074/jbc.R000003200.

    Article  CAS  PubMed  Google Scholar 

  64. Park EJ, Yuki Y, Kiyono H, Shimaoka M. Structural basis of blocking integrin activation and deactivation for anti-inflammation. J Biomed Sci. 2015;22:51. doi:10.1186/s12929-015-0159-6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–47. doi:10.1146/annurev.immunol.25.022106.141618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol. 2007;19:495–507. doi:10.1016/j.ceb.2007.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zent R, et al. Glomerular injury is exacerbated in diabetic integrin alpha1-null mice. Kidney Int. 2006;70:460–70. doi:10.1038/sj.ki.5000359.

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, et al. Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol Cell Biol. 2007;27:3313–26. doi:10.1128/MCB.01476-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yeh YC, et al. Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol. 2010;177:1743–54. doi:10.2353/ajpath.2010.091183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamzeh MT, Sridhara R, Alexander LD. Cyclic stretch-induced TGF-beta1 and fibronectin expression is mediated by beta1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol. 2015;308:F425–36. doi:10.1152/ajprenal.00589.2014.

    Article  CAS  PubMed  Google Scholar 

  71. Tang XH, Huang SM, Tan SQ, Ma YL. Effect of rosiglitazone on integrin beta1 expression and apoptosis of proximal tubular cell exposed to high glucose. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007;38:291–4.

    CAS  PubMed  Google Scholar 

  72. Glynne PA, Picot J, Evans TJ. Coexpressed nitric oxide synthase and apical beta(1) integrins influence tubule cell adhesion after cytokine-induced injury. J Am Soc Nephrol. 2001;12:2370–83.

    CAS  PubMed  Google Scholar 

  73. Elias BC, et al. The integrin beta1 subunit regulates paracellular permeability of kidney proximal tubule cells. J Biol Chem. 2014;289:8532–44. doi:10.1074/jbc.M113.526509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lal H, et al. Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci (Landmark Ed). 2009;14:2307–34.

    Article  CAS  Google Scholar 

  75. Kanasaki K, et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev Biol. 2008;313:584–93. doi:10.1016/j.ydbio.2007.10.047.

    Article  CAS  PubMed  Google Scholar 

  76. Liu S, Kapoor M, Denton CP, Abraham DJ, Leask A. Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 2009;60:2817–21. doi:10.1002/art.24801.

    Article  CAS  PubMed  Google Scholar 

  77. Sato T, et al. CD26 regulates p38 mitogen-activated protein kinase-dependent phosphorylation of integrin beta1, adhesion to extracellular matrix, and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299. Cancer Res. 2005;65:6950–6. doi:10.1158/0008-5472.CAN-05-0647.

    Article  CAS  PubMed  Google Scholar 

  78. Srivastava SP, Koya D, Kanasaki K. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. Biomed Res Int. 2013;2013:125469. doi:10.1155/2013/125469.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nitta K, et al. Oral administration of N-acetyl-seryl-aspartyl-lysyl-proline ameliorates kidney disease in both type 1 and type 2 diabetic mice via a therapeutic regimen. Biomed Res Int. 2016;2016:9172157. doi:10.1155/2016/9172157.

  80. Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 2011;412:74–9. doi:10.1016/j.bbrc.2011.07.041.

    Article  CAS  PubMed  Google Scholar 

  81. Wang H, et al. miRNA-29c suppresses lung cancer cell adhesion to extracellular matrix and metastasis by targeting integrin beta1 and matrix metalloproteinase2 (MMP2). PLoS One. 2013;8:e70192. doi:10.1371/journal.pone.0070192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Srivastava SP, et al. Effect of antifibrotic microRNAs crosstalk on the action of N-acetyl-seryl-aspartyl-lysyl-proline in diabetes-related kidney fibrosis. Sci Rep. 2016;6:29884. doi:10.1038/srep29884.

  83. Chen PY, et al. FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Reports. 2012;2:1684–96. doi:10.1016/j.celrep.2012.10.021.

  84. Shi S, Kanasaki K, Koya D. Linagliptin but not sitagliptin inhibited transforming growth factor-beta2-induced endothelial DPP-4 activity and the endothelial–mesenchymal transition. Biochem Biophys Res Commun. 2016;471:184–90. doi:10.1016/j.bbrc.2016.01.154.

  85. Havale SH, Pal M. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorg Med Chem. 2009;17:1783–802. doi:10.1016/j.bmc.2009.01.061.

    Article  CAS  PubMed  Google Scholar 

  86. Liu Y, Hu Y, Liu T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: medicinal chemistry and preclinical aspects. Curr Med Chem. 2012;19:3982–99.

    Article  CAS  PubMed  Google Scholar 

  87. Terawaki Y, et al. Efficacy of dipeptidyl peptidase-4 inhibitor linagliptin in patients with type 2 diabetes undergoing hemodialysis. Diabetol Metab Syndr. 2015;7:44. doi:10.1186/s13098-015-0043-2.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fitzpatrick S, Taylor S, Booth SW, Newton MJ. The development of a stable, coated pellet formulation of a water-sensitive drug, a case study: development of a stable core formulation. Pharm Dev Technol. 2006;11:521–8. doi:10.1080/10837450600941079.

    Article  CAS  PubMed  Google Scholar 

  89. Nabeno M, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun. 2013;434:191–6. doi:10.1016/j.bbrc.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  90. Tang HK, et al. Role of a propeller loop in the quaternary structure and enzymatic activity of prolyl dipeptidases DPP-IV and DPP9. FEBS Lett. 2011;585:3409–14. doi:10.1016/j.febslet.2011.10.009.

    Article  CAS  PubMed  Google Scholar 

  91. Abbott CA, McCaughan GW, Levy MT, Church WB, Gorrell MD. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain. Eur J Biochem. 1999;266:798–810.

    Article  CAS  PubMed  Google Scholar 

  92. Bjelke JR, et al. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem. 2004;279:34691–7. doi:10.1074/jbc.M405400200.

    Article  CAS  PubMed  Google Scholar 

  93. Wang H, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016;8:334ra351. doi:10.1126/scitranslmed.aad6095.

    Google Scholar 

  94. Kanasaki K, et al. Three ileus cases associated with the use of dipeptidyl peptidase-4 inhibitors in diabetic patients. J Diabetes Investig. 2013;4:673–5. doi:10.1111/jdi.12095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Attaway A, Mersfelder TL, Vaishnav S, Baker JK. Bullous pemphigoid associated with dipeptidyl peptidase IV inhibitors. A case report and review of literature. J Dermatol Case Rep. 2014;8:24–8. doi:10.3315/jdcr.2014.1166.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Parts of this review were presented in the Lilly Award Lecture at the Japan Diabetes Society 2016, Kyoto, Japan. KK would like to express his sincere gratitude to Professor Daisuke Koya for his guidance and support. This work was partially supported by grants from the Japan Society for the Promotion of Science to KK (23790381) and research grants from the Japan Research Foundation for Clinical Pharmacology to KK (2011). This work was partially supported by a Grant for Promoted Research awarded to KK (S2013-13, S2014-4, S2015-3) from Kanazawa Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Kanasaki.

Ethics declarations

Conflicts of interest

KK received lecture fees from Boehringer Ingelheim and Eli Lilly. Both Boehringer Ingelheim and Eli Lilly donated funds to Kanazawa Medical University and were not directly associated with this project. Boehringer Ingelheim, Mitsubishi Tanabe Pharma, and Ono Pharmaceutical contributed funds to establish the Division of Anticipatory Molecular Food Science and Technology. KK is in a consulting contract with Boehringer Ingelheim.

Ethics policy

This article does not contain any studies with human or animal subjects performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanasaki, K. The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetol Int 7, 212–220 (2016). https://doi.org/10.1007/s13340-016-0281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-016-0281-z

Keywords

Navigation