Skip to main content
Log in

Metabolic disturbances: role of the circadian timing system and sleep

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

The incidence of metabolic disorders such as obesity and diabetes is on the rise, and food quality is not alone to blame. Sleep disturbances, altered feeding time and circadian disruption are linked to metabolic disturbances in many clinical research studies and cross-sectional analyses. This review tried to summarize the role of the circadian timing system and sleep on energy and metabolic homeostasis. We also tried to explain the molecular and endocrine mechanisms behind circadian misalignment and sleep disorders that lead to metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377(9765):557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and extreme obesity among adults: United States, 1960–1962 through 2011–2012. Atlanta: Centers for Disease Control and Prevention, US Dept of Health and Human Services; 2014. http://www.cdc.gov/nchs/data/hestat/obesity_adult_11_12/obesity_adult_11_12.pdf

  3. Coomans CP, Lucassen EA, Kooijman S, et al. Plasticity of circadian clocks and consequences for metabolism. Diabetes Obes Metab. 2015;17(suppl 1):65–75.

    Article  PubMed  Google Scholar 

  4. Lucassen EA, Rother KI, Cizza G. Interacting epidemics? Sleep curtailment, insulin resistance, and obesity. Ann NY Acad Sci. 2012;1264:110–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Delezie J, Challet E. Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann NY Acad Sci. 2011;1243:30–46.

    Article  CAS  PubMed  Google Scholar 

  6. Centers for Disease Control and Prevention. Diabetes report card 2014. Atlanta: Centers for Disease Control and Prevention, US Dept of Health and Human Services; 2015. http://www.cdc.gov/diabetes/pdfs/library/diabetesreportcard2014.pdf

  7. Briançon-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr. 2015;7:25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Centers for Disease Control and Prevention. Short sleep duration among workers-United States, 2010. MMWR Morb Mortal Wkly Rep. 2012;61(16):281–5.

    Google Scholar 

  9. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann NY Acad Sci. 2014;1311:151–73.

    Article  CAS  PubMed  Google Scholar 

  10. Rakshit K, Qian J, Colwell CS, Matveyenko AV. The islet circadian clock: entrainment mechanisms, function and role in glucose homeostasis. Diabetes Obes Metab. 2015;17:115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9(10):764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011;13(2):125–37.

    Article  CAS  PubMed  Google Scholar 

  13. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15:R271–7.

    Article  CAS  PubMed  Google Scholar 

  14. Crumbley C, Wang Y, Kojetin DJ, Burris TP. Characterization of the core mammalian clock component, NPAS2, as a REV- ERBalpha/RORalpha target gene. J Biol Chem. 2010;285(46):35386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Challet E. Keeping circadian time with hormones. Diabetes Obes Metab. 2015;17:76–83.

    Article  CAS  PubMed  Google Scholar 

  16. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90(3):1063–102.

    Article  CAS  PubMed  Google Scholar 

  18. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saini C, Suter DM, Liani A, Gos P, Schibler U. The mammalian circadian timing system: synchronization of peripheral clocks. Cold Spring Harb Symp Quant Biol. 2011;76:39–47.

    Article  CAS  PubMed  Google Scholar 

  20. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonnissen HKJ, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–16.

    Article  CAS  PubMed  Google Scholar 

  22. Lecoultre V, Ravussin E, Redman LM. The fall in leptin concentration is a major determinant of the metabolic adaptation induced by caloric restriction independently of the changes in leptin circadian rhythms. J Clin Endocrinol Metab. 2011;96(9):E1512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spiegel K, Tasali E, Leproult R, Scherberg N, Van Cauter E. Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep. J Clin Endocrinol Metab. 2011;96(2):486–93.

    Article  CAS  PubMed  Google Scholar 

  24. Tsang AH, Barclay JL, Oster H. Interactions between endocrine and circadian systems. J Mol Endocrinol. 2014;52(1):R1–16.

    Article  CAS  PubMed  Google Scholar 

  25. Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 2011;91(2):389–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nogueiras R, Tschöp MH, Zigman JM. Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann NY Acad Sci. 2008;1126:14–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L. Circadian dysfunction induces leptin resistance in mice. Cell Metab. 2015;22(3):448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orozco-Solis R, Ramadori G, Coppari R, Sassone-Corsi P. SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology. 2015;156(6):2174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peschke E, Mühlbauer E. New evidence for a role of melatonin in glucose regulation. Best Pract Res Clin Endocrinol Metab. 2010;24(5):829–41.

    Article  CAS  PubMed  Google Scholar 

  30. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.

    Article  CAS  PubMed  Google Scholar 

  31. Katayose Y, Tasaki M, Ogata H, Nakata Y, Tokuyama K, Satoh M. Metabolic rate and fuel utilization during sleep assessed by whole-body indirect calorimetry. Metabolism. 2009;58(7):920–6.

    Article  CAS  PubMed  Google Scholar 

  32. Theorell-Haglow J, Berne C, Janson C, Sahlin C, Lindberg E. Associations between short sleep duration and central obesity in women. Sleep. 2010;33(5):593–8.

    PubMed  PubMed Central  Google Scholar 

  33. Horne J. REM sleep, energy balance and optimal foraging. Neurosci Biobehav Rev. 2009;33(3):466–74.

    Article  PubMed  Google Scholar 

  34. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bray MS, Young ME. Regulation of fatty acid metabolism by cell autonomous circadian clocks: time to fatten up on information? J Biol Chem. 2011;286(14):11883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bosy-Westphal A, Hinrichs S, Jauch-Chara K, et al. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts. 2008;1(5):266–73.

    Article  PubMed  Google Scholar 

  37. Ohkuma T, Fujii H, Iwase M, et al. Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes Care. 2013;36(3):611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benedict C, Hallschmid M, Lassen A, et al. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–36.

    Article  CAS  PubMed  Google Scholar 

  39. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–41.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hucking K, Hamilton-Wessler M, Ellmerer M, Bergman RN. Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest. 2003;111(2):257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54:S114–24.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez-Jimenez F, Sert Kuniyoshi FH, Gami A, Somers VK. Obstructive sleep apnea: implications for cardiac and vascular disease. Chest. 2008;133(3):793–804.

    Article  PubMed  Google Scholar 

  43. Priou P, Le Vaillant M, Meslier N, et al. Independent association between obstructive sleep apnea severity and glycated hemoglobin in adults without diabetes. Diabetes Care. 2012;35(9):1902–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. JAMA. 2004;291(16):2013–6.

    Article  CAS  PubMed  Google Scholar 

  45. Seicean S, Kirchner HL, Gottlieb DJ, et al. Sleep-disordered breathing and impaired glucose metabolism in normal-weight and overweight/obese individuals: the sleep heart health study. Diabetes Care. 2008;31(5):1001–6.

    Article  PubMed  Google Scholar 

  46. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165(5):670–6.

    Article  PubMed  Google Scholar 

  47. Drager LF, Jun JC, Polotsky VY. Metabolic consequences of intermittent hypoxia: relevance to obstructive sleep apnea. Best Pract Res Clin Endocrinol Metab. 2010;24(5):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu J, Long YS, Gozal D, Epstein PN. Beta-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic Biol Med. 2009;46(6):783–90.

    Article  CAS  PubMed  Google Scholar 

  49. Drager LF, Li J, Reinke C, Bevans-Fonti S, Jun JC, Polotsky VY. Intermittent hypoxia exacerbates metabolic effects of diet-induced obesity. Obesity. 2011;19(11):2167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol. 2009;1065:1538–44.

    Article  Google Scholar 

  51. Polotsky VY, Patil SP, Savransky V, et al. Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity. Am J Respir Crit Care Med. 2009;179(3):228–34.

    Article  PubMed  Google Scholar 

  52. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci USA. 2008;105(3):1044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest. 2010;137(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  54. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414–20.

    Article  PubMed  Google Scholar 

  55. Shan Z, Ma H, Xie M, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38:529–37.

    Article  PubMed  Google Scholar 

  56. Cespedes EM, Bhupathiraju SN, Li Y, Rosner B, Redline S, Hu FB. Long-term changes in sleep duration, energy balance and risk of type 2 diabetes. Diabetologia. 2016;59(1):101–9.

    Article  PubMed  Google Scholar 

  57. Li X, Lin L, Lv L, et al. U-shaped relationships between sleep duration and metabolic syndrome and metabolic syndrome components in males: a prospective cohort study. Sleep Med. 2015;16(8):949–54.

    Article  PubMed  Google Scholar 

  58. Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005;308(5724):1043–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rudic RD, McNamara P, Curtis AM, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192(7):769–75.

    Article  CAS  PubMed  Google Scholar 

  61. Dallmann R, Weaver DR. Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int. 2010;27(6):1317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lau P, Nixon SJ, Parton RG, Muscat GE. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem. 2004;279(35):36828–40.

    Article  CAS  PubMed  Google Scholar 

  63. Le Martelot G, Claudel T, Gatfield D, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009;7(9):e1000181.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ando H, Kumazaki M, Motosugi Y, et al. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology. 2011;152(4):1347–54.

    Article  CAS  PubMed  Google Scholar 

  65. Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146(12):5631–6.

    Article  CAS  PubMed  Google Scholar 

  66. Ando H, Oshima Y, Yanagihara H, et al. Profile of rhythmic gene expression in the livers of obese diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006;346(4):1297–302.

    Article  CAS  PubMed  Google Scholar 

  67. Ando H, Takamura T, Matsuzawa-Nagata N, et al. Clock gene expression in peripheral leucocytes of patients with type 2 diabetes. Diabetologia. 2009;52(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  68. Wu H, Stone WS, Hsi X, et al. Effects of different sleep restriction protocols on sleep architecture and daytime vigilance in healthy men. Physiol Res. 2010;59(5):821–9.

    CAS  PubMed  Google Scholar 

  69. Fonken LK, Workman JL, Walton JC, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA. 2010;107(43):18664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cizza G, Requena M, Galli G, De Jonge L. Chronic sleep deprivation and seasonality: implications for the obesity epidemic. J Endocrinol Investig. 2011;34(10):793–800.

    CAS  Google Scholar 

  71. Prokopenko L, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  72. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  73. Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20:991–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347:1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22(5):789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhong Sun.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Ethics policy

No human or animal subjects were used in this study by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikary, N., Shrestha, S.L. & Sun, J.Z. Metabolic disturbances: role of the circadian timing system and sleep. Diabetol Int 8, 14–22 (2017). https://doi.org/10.1007/s13340-016-0279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-016-0279-6

Keywords

Navigation