Diabetology International

, Volume 7, Issue 1, pp 18–24 | Cite as

Implications of using HBA1C as a diagnostic marker for diabetes

  • Nadia HussainEmail author
Review Article


Diagnosing diabetes now includes a new criterion; hemoglobin A1C ≥6.5 % which can have significant implications. This review compares the advantages and disadvantages of using HbA1C as the main diabetic diagnostic test. HbA1C has greater stability and less variability than plasma glucose measurements but may not always reflect glycemic levels of glycaemia. The present cut off value identifies fewer diabetics than glucose-based criteria. HbA1C being more convenient could diagnose more patients but this is not yet proven. When choosing a diagnostic test, the limitations of each test must be clearly understood to use appropriate clinical judgment and consider patient preference.


Diabetes mellitus Diagnosis Diabetic complications Fasting plasma glucose HbA1C Glycohaemoglobin Oral glucose tolerance test 


Compliance with ethical standards

Ethics policy

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

The author declares that they have no conflict of interest.


  1. 1.
    Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. Retrived from
  4. 4.
    Global status report on noncommunicable diseases. Description of the global burden of NCDs, their risk factors and determinants. Geneva: World Health Organization; 2010.
  5. 5.
    International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2010.
  6. 6.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, et al. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(3):293–301.CrossRefPubMedGoogle Scholar
  8. 8.
    World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a consultation. Part 1, Diagonosis and classification of diabetes mellitus. Geneva: World Health Organization; 1999.
  9. 9.
    Association AD. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2014;37(Supplement 1):S81–90.CrossRefGoogle Scholar
  10. 10.
    Association AD. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37(Supplement 1):S14–80.CrossRefGoogle Scholar
  11. 11.
    Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82.CrossRefGoogle Scholar
  12. 12.
    Sabanayagam C, Liew G, Tai ES, Shankar A, Lim SC, Subramaniam T, et al. Relationship between glycated haemoglobin and microvascular complications: is there a natural cut-off point for the diagnosis of diabetes? Diabetologia. 2009;52(7):1279–89.CrossRefPubMedGoogle Scholar
  13. 13.
    Tapp RJ, Tikellis G, Wong TY, Harper CA, Zimmet PZ, Shaw JE. Longitudinal association of glucose metabolism with retinopathy: results from the Australian diabetes obesity and lifestyle (AusDiab) study. Diabetes Care. 2008;31(7):1349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance results from the veterans administration genetic epidemiology study. Diabetes. 2006;55(5):1430–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Allen DW, Schroeder W, Balog J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J Am Chem Soc. 1958;80(7):1628–34.CrossRefGoogle Scholar
  16. 16.
    Rahbar S. An abnormal hemoglobin in red cells of diabetics. Clin Chim Acta. 1968;22(2):296–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Rahbar S, Blumenfeld O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun. 1969;36(5):838–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med. 1976;295(8):417–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Koenig RJ, Peterson CM, Kilo C, Cerami A, Williamson JR. Hemoglobin AIc as an indicator of the degree of glucose intolerance in diabetes. Diabetes. 1976;25(3):230–2.CrossRefPubMedGoogle Scholar
  20. 20.
    Koenig RJ, Cerami A. Hemoglobin AIc and diabetes mellitus. Annu Rev Med. 1980;31:29–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1(1):9–17.CrossRefPubMedGoogle Scholar
  22. 22.
    Carruthers A. Facilitated diffusion of glucose. Physiol Rev. 1990;70(4):1135–76.PubMedGoogle Scholar
  23. 23.
    Lenters-Westra E, Slingerland RJ. Hemoglobin A1c determination in the A1C-Derived Average Glucose (ADAG) study. Clin Chem Lab Med. 2008;46(11):1617–23.CrossRefPubMedGoogle Scholar
  24. 24.
    Jeffcoate S. Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet Med. 2004;21(7):657–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Borch-Johnsen K, Colagiuri S. Diagnosing diabetes—time for a change? Diabetologia. 2009;52(11):2247–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Rohlfing C, Wiedmeyer H-M, Little R, Grotz VL, Tennill A, England J, et al. Biological variation of glycohemoglobin. Clin Chem. 2002;48(7):1116–8.PubMedGoogle Scholar
  27. 27.
    Mikesh LM, Bruns DE. Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem. 2008;54(5):930–2.CrossRefPubMedGoogle Scholar
  28. 28.
    Bruns DE, Knowler WC. Stabilization of glucose in blood samples: why it matters. Clin Chem. 2009;55(5):850–2.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tapp RJ, Tikellis G, Wong TY, Harper CA, Zimmet PZ, Shaw JE. Longitudinal association of glucose metabolism with retinopathy results from the Australian diabetes obesity and lifestyle (AusDiab) Study. Diabetes Care. 2008;31(7):1349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K. Glycemic thresholds for diabetes-specific retinopathy implications for diagnostic criteria for diabetes. Diabetes Care. 2011;34(1):145–50.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Miller WG, Myers GL, Ashwood ER, Killeen AA, Wang E, Ehlers GW, et al. State of the art in trueness and interlaboratory harmonization for 10 analytes in general clinical chemistry. Arch Pathol Lab Med. 2008;132(5):838–46.PubMedGoogle Scholar
  32. 32.
    Consensus Committee. Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of clinical chemistry and laboratory medicine, and the International Diabetes Federation. Diabetes Care. 2007;30(9):2399.CrossRefGoogle Scholar
  33. 33.
    Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362(9):800–11.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McCarter RJ, Hempe JM, Gomez R, Chalew SA. Biological variation in HbA1c predicts risk of retinopathy and nephropathy in type 1 diabetes. Diabetes Care. 2004;27(6):1259–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Davidson MB, Schriger DL. Effect of age and race/ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes. Diabetes Res Clin Pract. 2010;87(3):415–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Ziemer DC, Kolm P, Weintraub WS, Vaccarino V, Rhee MK, Twombly JG, et al. Glucose-independent, black-white differences in hemoglobin A1c levels a cross-sectional analysis of 2 studies. Ann Intern Med. 2010;152(12):770–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97(4):1067–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Roberts WL, Safar-Pour S, De BK, Rohlfing CL, Weykamp CW, Little RR. Effects of hemoglobin C and S traits on glycohemoglobin measurements by eleven methods. Clin Chem. 2005;51(4):776–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Gambino R. Glucose: a simple molecule that is not simple to quantify. Clin Chem. 2007;53(12):2040–1.CrossRefPubMedGoogle Scholar
  40. 40.
    Christensen DL, Witte DR, Kaduka L, Jørgensen ME, Borch-Johnsen K, Mohan V, et al. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care. 2010;33(3):580–2.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhou X, Pang Z, Gao W, Wang S, Zhang L, Ning F, et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao,China. Diabetes Care. 2010;33(3):545–50.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Eriksson K-F, Lindgärde F. No excess 12-year mortality in men with impaired glucose tolerance who participated in the Malmö preventive trial with diet and exercise. Diabetologia. 1998;41(9):1010–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Uusitupa M, Peltonen M, Lindstrom J, Aunola S, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, et al. Ten-year mortality and cardiovascular morbidity in the finnish diabetes prevention study-secondary analysis of the randomized trial. PLoS One. 2009;4(5):e5656.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the US population in 1988–2006. Diabetes Care. 2010;33(3):562–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Carson AP, Reynolds K, Fonseca VA, Muntner P. Comparison of A1C and fasting glucose criteria to diagnose diabetes among US adults. Diabetes Care. 2010;33(1):95–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ, Haffner SM. A1C Between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors the insulin resistance atherosclerosis study (IRAS). Diabetes Care. 2010;33(9):2104–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pajunen P, Peltonen M, Eriksson J, Ilanne-Parikka P, Aunola S, Keinänen-Kiukaanniemi S, et al. HbA1c in diagnosing and predicting type 2 diabetes in impaired glucose tolerance: the finnish diabetes prevention study. Diabet Med. 2011;28(1):36–42.CrossRefPubMedGoogle Scholar
  49. 49.
    Committee IE. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327–34.CrossRefGoogle Scholar
  50. 50.
    Colagiuri S, Borch-Johnsen K. DETECT-2: early detection of type 2 diabetes and IGT. Diabetes Voice. 2003;48(4):11–3.Google Scholar
  51. 51.
    Borch-Johnsen K, Colagiuri S. Diagnosing diabetes–time for a change? Diabetologia. 2009;52(11):2247–50.CrossRefPubMedGoogle Scholar
  52. 52.
    McCance DR, Hanson RL, Charles MA, Jacobsson LT, Pettitt DJ, Bennett PH, et al. Comparison of tests for glycated haemoglobin and fasting and two hour plasma glucose concentrations as diagnostic methods for diabetes. BMJ. 1994;308(6940):1323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Engelgau MM, Thompson TJ, Herman WH, Boyle JP, Aubert RE, Kenny SJ, et al. Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes. Diagnostic criteria and performance revisited. Diabetes Care. 1997;20(5):785–91.CrossRefPubMedGoogle Scholar
  54. 54.
    Davidson MB, Schriger DL, Peters AL, Lorber B. Relationship between fasting plasma glucose and glycosylated hemoglobin-potential for false-positive diagnoses of type 2 diabetes using new diagnostic criteria. JAMA. 1999;281(13):1203–10.CrossRefPubMedGoogle Scholar
  55. 55.
    Cheng YJ, Gregg EW, Geiss LS, Imperatore G, Williams DE, Zhang X, et al. Association of A1C and fasting plasma glucose levels with diabetic retinopathy prevalence in the U.S. population: implications for diabetes diagnostic thresholds. Diabetes Care. 2009;32(11):2027–32.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Miyazaki M, Kubo M, Kiyohara Y, Okubo K, Nakamura H, Fujisawa K, et al. Comparison of diagnostic methods for diabetes mellitus based on prevalence of retinopathy in a Japanese population: the Hisayama study. Diabetologia. 2004;47(8):1411–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Wong TY, Liew G, Tapp RJ, Schmidt MI, Wang JJ, Mitchell P, et al. Relation between fasting glucose and retinopathy for diagnosis of diabetes: three population-based cross-sectional studies. Lancet. 2008;371(9614):736–43.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    van Leiden HA, Moll AC, Dekker JM, Abramoff MD, Polak BC. Photography or ophthalmoscopy for detection of diabetic retinopathy? Diabetes Care. 2003;26(4):1318–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Group DPPR. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393.CrossRefGoogle Scholar
  60. 60.
    Cohen RM, Smith EP. Frequency of HbA1c discordance in estimating blood glucose control. Curr Opin Clin Nutr Metab Care. 2008;11(4):512–7.CrossRefPubMedGoogle Scholar
  61. 61.
    van’t Riet E, Alssema M, Rijkelijkhuizen JM, Kostense PJ, Nijpels G, Dekker JM. Relationship between A1C and glucose levels in the general Dutch population: the new Hoorn study. Diabetes Care. 2010;33((1)):61–6.CrossRefGoogle Scholar
  62. 62.
    Lapolla A, Tubaro M, Fedele D, Reitano R, Arico N, Ragazzi E, et al. A matrix-assisted laser desorption/ionization mass spectrometry study of the non-enzymatic glycation products of human globins in diabetes. Rapid Commun Mass Spectrom. 2005;19(2):162–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Lapolla A, Mosca A, Fedele D. The general use of glycated haemoglobin for the diagnosis of diabetes and other categories of glucose intolerance: still a long way to go. Nutr Metab Cardiovasc Dis. 2011;21(7):467–75.CrossRefPubMedGoogle Scholar
  64. 64.
    World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: World Health Organization; 2011.
  65. 65.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japan Diabetes Society 2015

Authors and Affiliations

  1. 1.Biomedical Sciences, College of PharmacyAl Ain University of Science and TechnologyAl AinUAE

Personalised recommendations