Skip to main content
Log in

Olmesartan and telmisartan comparably preserve pancreatic beta-cell mass with reduction of oxidative stress in db/db mice

  • Original Article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Several clinical studies have provided evidence that blockade of the renin–angiotensin system (RAS) prevents onset of type 2 diabetes. In mice models of type 2 diabetes, some angiotensin II type 1 receptor blockers (ARBs) reportedly protect against reduction of beta-cell mass. Although several ARBs are commercially available, the effect of these drugs on beta-cell mass has not been compared directly. The purpose of this study was to compare the protective effects on beta cell mass of olmesartan, an ARB with strong binding capacity to the angiotensin II type 1 receptor, and telmisartan, an ARB with partial peroxisome proliferator-activated receptor-γ (PPARγ) activity. Eight-week-old female db/db mice were treated with olmesartan medoxomil (3.0 mg/kg body weight/day), telmisartan (1.5 mg/kg body weight/day), or placebo for 6 weeks. This was followed by examination of glucose tolerance, insulin sensitivity, and islet morphology in each group. Random glucose level after treatment with the two ARBs was slightly, but significantly, lower than in the placebo group whereas glucose tolerance and insulin sensitivity were similar among the three groups. Beta-cell mass was higher and staining intensities for NAD(P)H oxidase components and markers of oxidative stress were lower in islets of the olmesartan and telmisartan-treated groups than in those of the placebo group. Our results reveal that olmesartan and telmisartan had comparable effects on reduction of beta-cell mass in db/db mice via their antioxidant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AT1(2)R:

Angiotensin II type 1 (2) receptor

ARBs:

Angiotensin II (Ang II) receptor blockers

IPGTT:

Intraperitoneal glucose tolerance test

ITT:

Insulin tolerance test

RAS:

Renin–angiotensin system

References

  1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  2. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science. 2005;307(5708):380–4.

    Article  CAS  PubMed  Google Scholar 

  3. DeFronzo RA. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract Suppl. 2004;143:9–21.

    Article  CAS  PubMed  Google Scholar 

  4. Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001;50(Suppl 1):S118–21.

    Article  CAS  PubMed  Google Scholar 

  5. Leung PS, Carlsson PO. Tissue renin–angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol. 2001;26(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  6. Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47(2):240–8.

    Article  CAS  PubMed  Google Scholar 

  7. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  8. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira HR, Verlengia R, Carvalho CR, Britto LR, Curi R, Carpinelli AR. Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes. 2003;52(6):1457–63.

    Article  CAS  PubMed  Google Scholar 

  10. McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamas G, Tognoni G, Tuomilehto J, Villamil AS, Vozar J, Califf RM. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 362(16):1477–1490.

  11. Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005;46(5):821–6.

    Article  CAS  PubMed  Google Scholar 

  12. Shao J, Iwashita N, Ikeda F, Ogihara T, Uchida T, Shimizu T, Uchino H, Hirose T, Kawamori R, Watada H. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta-cell function and morphology in db/db mice. Biochem Biophys Res Commun. 2006;344(4):1224–33.

    Article  CAS  PubMed  Google Scholar 

  13. Nakayama M, Inoguchi T, Sonta T, Maeda Y, Sasaki S, Sawada F, Tsubouchi H, Sonoda N, Kobayashi K, Sumimoto H, Nawata H. Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun. 2005;332(4):927–33.

    Article  CAS  PubMed  Google Scholar 

  14. Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME. Improved islet morphology after blockade of the renin- angiotensin system in the ZDF rat. Diabetes. 2004;53(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  15. Chu KY, Lau T, Carlsson PO, Leung PS. Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes. 2006;55(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  16. Miura S, Fujino M, Hanzawa H, Kiya Y, Imaizumi S, Matsuo Y, Tomita S, Uehara Y, Karnik SS, Yanagisawa H, Koike H, Komuro I, Saku K. Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem. 2006;281(28):19288–95.

    Article  CAS  PubMed  Google Scholar 

  17. Kiya Y, Miura S, Fujino M, Imaizumi S, Karnik SS, Saku K. Clinical and pharmacotherapeutic relevance of the double-chain domain of the angiotensin II type 1 receptor blocker olmesartan. Clin Exp Hypertens. 32(2):129–136.

  18. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ-modulating activity. Hypertension. 2004;43(5):993–1002.

    Article  CAS  PubMed  Google Scholar 

  19. Saitoh Y, Hongwei W, Ueno H, Mizuta M, Nakazato M. Telmisartan attenuates fatty-acid-induced oxidative stress and NAD(P)H oxidase activity in pancreatic beta-cells. Diabetes Metab. 2009;35(5):392–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mogi M, Tsukuda K, Li JM, Iwanami J, Min LJ, Sakata A, Fujita T, Iwai M, Horiuchi M. Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, olmesartan. Neuropharmacology. 2007;53(8):899–905.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang GX, Ohmori K, Nagai Y, Fujisawa Y, Nishiyama A, Abe Y, Kimura S. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J Mol Cell Cardiol. 2007;42(4):804–11.

    Article  CAS  PubMed  Google Scholar 

  22. Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, Podewski E, Grote K, Kiian I, Wollert KC, Hilfiker A, Drexler H. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation. 2004;109(18):2227–33.

    Article  CAS  PubMed  Google Scholar 

  23. Grothusen C, Bley S, Selle T, Luchtefeld M, Grote K, Tietge UJ, Drexler H, Schieffer B. Combined effects of HMG-CoA-reductase inhibition and renin–angiotensin system blockade on experimental atherosclerosis. Atherosclerosis. 2005;182(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  24. Uchida T, Iwashita N, Ohara-Imaizumi M, Ogihara T, Nagai S, Choi JB, Tamura Y, Tada N, Kawamori R, Nakayama KI, Nagamatsu S, Watada H. Protein kinase C–delta plays a non-redundant role in insulin secretion in pancreatic beta cells. J Biol Chem. 2007;282(4):2707–16.

    Article  CAS  PubMed  Google Scholar 

  25. Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H, Migita M, Shimada T, Kawamori R, Watada H. Little evidence of trans differentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia. 2003;46(10):1366–74.

    Article  CAS  PubMed  Google Scholar 

  26. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325–32.

    Article  CAS  PubMed  Google Scholar 

  27. Kaihara M, Nakamura Y, Sugimoto T, Uchida HA, Norii H, Hanayama Y, Makino H. Olmesartan and temocapril prevented the development of hyperglycemia and the deterioration of pancreatic islet morphology in Otsuka-Long-Evans-Tokushima fatty rats. Acta Med Okayama. 2009;63(1):35–42.

    PubMed  Google Scholar 

  28. Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta-cell line, MIN6-a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun. 2005;326(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  29. Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, Watada H, Leibiger IB, Yamasaki Y, Hori M. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes. 2003;52(12):2896–904.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez R, Viscarra JA, Minas JN, Nakano D, Nishiyama A, Ortiz RM. Angiotensin receptor blockade increases pancreatic insulin secretion and decreases glucose intolerance during glucose supplementation in a model of metabolic syndrome. Endocrinology. 153(4):1684–1695.

Download references

Acknowledgments

We thank Mrs Naoko Daimaru for excellent technical assistance.

Conflict of interest

H.W. has received lecture fees from Daiichi Sankyo, Takeda, MSD, Sanofi–Aventis, Ono, Novartis, Astellas, Dainippon Sumitomo, Tanabe Mitsubishi, Novo Nordisk, and Sanwakagaku, and research funding from Sanofi–Aventis, Novo Nordisk, Novartis, AstraZeneca, Sanwakagaku, Ono, MSD, Boehringer Ingelheim, Kissei, Takeda, and Daiichi Sankyo. Y.F. received lecture fees from Novartis and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoyoshi Uchida.

About this article

Cite this article

Shigihara, N., Uchida, T., Yorifuji, T. et al. Olmesartan and telmisartan comparably preserve pancreatic beta-cell mass with reduction of oxidative stress in db/db mice. Diabetol Int 5, 62–68 (2014). https://doi.org/10.1007/s13340-013-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-013-0135-x

Keywords

Navigation