Skip to main content

Advertisement

Log in

Different effects of islet transplantation and Detemir treatment on the reversal of streptozotocin-induced diabetes associated with β-cell regeneration

  • Original article
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Here we examined whether new β-cell formation occurs when β cells face being severely destroyed and hyperglycemia is restored. Animals were made diabetic by a single i.p. injection of a high dose of streptozotocin, and blood glucose levels were kept in the normal range with twice-daily Detemir (long-acting human insulin analog) injection or islet transplantation for 10 weeks. Although Detemir injection could effectively reverse hyperglycemia and glycemic control was successful, there was no β-cell increase, new formation, or recovery of islet morphology in Detemir-treated mice. In contrast, β-cell regeneration was restored when hyperglycemia was reversed by islet transplantation. The number of β cells and islets was increased, and islet structure was greatly recovered. We further evaluated whether replication or new formation contributes to the recovery. Newly born β cells, as observed as scattered singlets-doublets of insulin-positive cells or clusters of less than 6 β cells across, were frequently seen in transplanted mice, suggesting that neogenesis of β cells was enhanced in transplanted mice. Ki67-positive islets were increased in transplanted mice, suggesting that β-cell proliferation is enhanced. Thus, this recovery involved both increased new formation and replication. Our results suggest that the effects of Detemir on pancreatic β cells were very different from those of islet transplantation and that islet transplantation could be a trigger for the induction of new formation and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brockenbrough JS, Weir GC, Bonner-Weir S. Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes. 1988;37:232–6.

    Article  CAS  PubMed  Google Scholar 

  2. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes. 1993;42:1715–20.

    Article  CAS  PubMed  Google Scholar 

  3. Parsons JA, Bartke A, Sorenson RL. Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones. Endocrinology. 1995;136:2013–21.

    Article  CAS  PubMed  Google Scholar 

  4. Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell. 1997;88:561–72.

    Article  PubMed  Google Scholar 

  5. Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol. 2000;24:297–302.

    Article  CAS  PubMed  Google Scholar 

  6. Montanya E, Nacher V, Biarnés M, Soler J. Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes. 2000;49:1341–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bock T, Pakkenberg B, Buschard K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes. 2003;52:1716–22.

    Article  CAS  PubMed  Google Scholar 

  8. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, Yoo SJ, Kang MI, Cha BY, Lee KW, Son HY, Kang SK, Kim HS, Lee IK, Bonner-Weir S. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab. 2003;88:2300–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes. 2004;5(Suppl 2):16–22.

    Article  PubMed  Google Scholar 

  11. Klöppel G, Löhr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985;4:110–25.

    PubMed  Google Scholar 

  12. Gu D, Sarvetnick N. Epithelial cell proliferation and islet neogenesis in IFN-g transgenic mice. Development. 1993;118:33–46.

    CAS  PubMed  Google Scholar 

  13. Wang TC, Bonner-Weir S, Oates PS, Chulak M, Simon B, Merlino GT, Schmidt EV, Brand SJ. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Inves. 1993;92:1349–56.

    Article  CAS  Google Scholar 

  14. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48:2270–6.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto K, Miyagawa J, Waguri M, Sasada R, Igarashi K, Li M, Nammo T, Moriwaki M, Imagawa A, Yamagata K, Nakajima H, Namba M, Tochino Y, Hanafusa T, Matsuzawa Y. Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes. 2000;49:2021–7.

    Article  CAS  PubMed  Google Scholar 

  16. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 2008;105:19915–9.

    Article  CAS  PubMed  Google Scholar 

  17. Stefan Y, Orci L, Malaisse-Lagae F, Perrelet A, Patel Y, Unger RH. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes. 1982;31:694–700.

    Article  CAS  PubMed  Google Scholar 

  18. Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, Cooper GJ, Holman RR, Turner RC. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 1988;9:151–9.

    CAS  PubMed  Google Scholar 

  19. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96.

    Article  CAS  PubMed  Google Scholar 

  20. Kergoat M, Bailbe D, Portha B. Insulin treatment improves glucose-induced insulin release in rats with NIDDM induced by streptozocin. Diabetes. 1987;36:971–7.

    Article  CAS  PubMed  Google Scholar 

  21. Adewole SO, Ojewole JA. Insulin-induced immunohistochemical and morphological changes in pancreatic beta-cells of streptozotocin-treated diabetic rats. Methods Find Exp Clin Pharmacol. 2007;29:447–55.

    Article  CAS  PubMed  Google Scholar 

  22. Hamamoto Y, Tsuura Y, Fujimoto S, Nagata M, Takeda T, Mukai E, Fujita J, Yamada Y, Seino Y. Recovery of function and mass of endogenous beta-cells in streptozotocin-induced diabetic rats treated with islet transplantation. Biochem Biophys Res Commun. 2001;287:104–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Larsen UD, Ribel U, Markussen J. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J. 1995;312:725–31.

    CAS  PubMed  Google Scholar 

  24. Whittingham JL, Havelund S, Jonassen I. Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry. 1997;36:2826–31.

    Article  CAS  PubMed  Google Scholar 

  25. Heinemann L, Sinha K, Weyer C, Loftager M, Hirschberger S, Heise T. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet Med. 1999;16:332–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chapman TM, Perry CM. Insulin detemir: a review of its use in the management of type 1 and 2 diabetes mellitus. Drugs. 2004;64:2577–95.

    Article  CAS  PubMed  Google Scholar 

  27. Inada A, Hamamoto Y, Tsuura Y, Miyazaki J, Toyokuni S, Ihara Y, Nagai K, Yamada Y, Bonner-Weir S, Seino Y. Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic beta cells. Mol Cell Biol. 2004;24:2831–41.

    Article  CAS  PubMed  Google Scholar 

  28. Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193:415–7.

    Article  CAS  PubMed  Google Scholar 

  29. Like AA, Appel MC, Williams RM, Rossini AA. Streptozotocin-induced pancreatic insulitis in mice. Morphologic and physiologic studies. Lab Invest. 1978;38:470–86.

    CAS  PubMed  Google Scholar 

  30. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50:537–46.

    CAS  PubMed  Google Scholar 

  31. Nukatsuka M, Yoshimura Y, Nishida M, Kawada J. Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. J Endocrinol. 1990;127:161–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sotníková R, Nosálová V, Stefek M, Stolc S, Gajdosík A, Gajdosíková A. Streptozotocin diabetes-induced changes in aorta, peripheral nerves and stomach of Wistar rats. Gen Physiol Biophys. 1999;18:155–62.

    PubMed  Google Scholar 

  33. Wang T, Fontenot RD, Soni MG, Bucci TJ, Mehendale HM. Enhanced hepatotoxicity and toxic outcome of thioacetamide in streptozotocin-induced diabetic rats. Toxicol Appl Pharmacol. 2000;166:92–100.

    Article  CAS  PubMed  Google Scholar 

  34. Imaeda A, Kaneko T, Aoki T, Kondo Y, Nagase H. DNA damage and the effect of antioxidants in streptozotocin-treated mice. Food Chem Toxicol. 2002;40:979–87.

    Article  CAS  PubMed  Google Scholar 

  35. Koulmanda M, Qipo A, Chebrolu S, O’Neil J, Auchincloss H, Smith RN. The effect of low versus high dose of streptozotocin in cynomolgus monkeys (Macaca fascilularis). Am J Transplant. 2003;3:267–72.

    Article  CAS  PubMed  Google Scholar 

  36. Brøndum E, Nilsson H, Aalkjaer C. Functional abnormalities in isolated arteries from Goto-Kakizaki and streptozotocin-treated diabetic rat models. Horm Metab Res. 2005;37:56–60.

    Article  PubMed  Google Scholar 

  37. Pieber TR, Eugène-Jolchine I, Derobert E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care. 2000;23:157–62.

    Article  CAS  PubMed  Google Scholar 

  38. Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. US Study Group of Insulin Glargine in Type 1 Diabetes. Diabetes Care. 2000;23:639–43.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenstock J, Park G, Zimmerman J. US Insulin Glargine (HOE 901) Type 1 Diabetes Investigator Group. Basal insulin glargine (HOE 901) versus NPH insulin in patients with type 1 diabetes on multiple daily insulin regimens US Insulin Glargine (HOE 901) Type 1 Diabetes Investigator Group. Diabetes Care. 2000; 23:1137–42.

    Google Scholar 

  40. Schober E, Schoenle E, Van Dyk J, Wernicke-Panten K, Pediatric Study Group of Insulin Glargine. Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2002;15:369–76.

    CAS  PubMed  Google Scholar 

  41. Riddle MC, Rosenstock J, Gerich J, Insulin Glargine 4002 Study Investigators. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26:3080–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hermansen K, Fontaine P, Kukolja KK, Peterkova V, Leth G, Gall MA. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basal-bolus therapy for patients with type 1 diabetes. Diabetologia. 2004;47:622–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hershon KS, Blevins TC, Mayo CA, Rosskamp R. Once-daily insulin glargine compared with twice-daily NPH insulin in patients with type 1 diabetes. Endocr Pract. 2004;10:10–7.

    PubMed  Google Scholar 

  44. Home P, Bartley P, Russell-Jones D, Hanaire-Broutin H, Heeg JE, Abrams P, Landin-Olsson M, Hylleberg B, Lang H, Draeger E, Study to Evaluate the Administration of Detemir Insulin Efficacy, Safety, Suitability (STEADINESS) Study Group. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes: a randomized clinical trial. Diabetes Care. 2004;27:1081–7.

    Article  CAS  PubMed  Google Scholar 

  45. Russell-Jones D, Simpson R, Hylleberg B, Draeger E, Bolinder J. Effects of QD insulin detemir or neutral protamine Hagedorn on blood glucose control in patients with type I diabetes mellitus using a basal-bolus regimen. Clin Ther. 2004;26:724–36.

    Article  CAS  PubMed  Google Scholar 

  46. Kurtzhals P, Schäffer L, Sørensen A, Kristensen C, Jonassen I, Schmid C, Trüb T. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000;49:999–1005.

    Article  CAS  PubMed  Google Scholar 

  47. Wada T, Azegami M, Sugiyama M, Tsuneki H, Sasaoka T. Characteristics of signalling properties mediated by long-acting insulin analogue glargine and detemir in target cells of insulin. Diabetes Res Clin Pract. 2008;81:269–77.

    Article  CAS  PubMed  Google Scholar 

  48. Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 1999;48:738–44.

    Article  CAS  PubMed  Google Scholar 

  49. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. 2004;53:1721–32.

    Article  CAS  PubMed  Google Scholar 

  50. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitrogeneration of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia. 2005;48:49–57.

    Article  CAS  PubMed  Google Scholar 

  51. Deltour L, Leduque P, Paldi A, Ripoche MA, Dubois P, Jami J. Polyclonal origin of pancreatic islets in aggregation mouse chimaeras. Development. 1991;112:1115–21.

    CAS  PubMed  Google Scholar 

  52. Grossman EJ, Lee DD, Tao J, Wilson RA, Park SY, Bell GI, Chong AS. Glycemic control promotes pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice. PLoS ONE. 2010;5(1):e8749.

    Article  PubMed  Google Scholar 

  53. Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA. 2006;103(24):9232–7.

    Article  CAS  PubMed  Google Scholar 

  54. Reid TW, Reid WA. The labile nature of the insulin signal(s) for the stimulation of DNA synthesis in mouse lens epithelial and 3T3 cells. J Biol Chem. 1987;262:229–33.

    CAS  PubMed  Google Scholar 

  55. Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96:329–39.

    Article  CAS  PubMed  Google Scholar 

  56. Brissova M, Fowler M, Wiebe P, Shostak A, Shiota M, Radhika A, Lin PC, Gannon M, Powers AC. Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes. 2004;53:1318–25.

    Article  CAS  PubMed  Google Scholar 

  57. Nyqvist D, Köhler M, Wahlstedt H, Berggren PO. Donor islet endothelial cells participate in formation of functional vessels within pancreatic islet grafts. Diabetes. 2005;54:2287–93.

    Article  CAS  PubMed  Google Scholar 

  58. King AJ, Fernandes JR, Hollister-Lock J, Nienaber CE, Bonner-Weir S, Weir GC. Normal relationship of beta- and non-beta-cells not needed for successful islet transplantation. Diabetes. 2007;56:2312–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Minako Kimura, Rie Matsuoka, and Yo King for excellent technical assistance, and Dr. Gordon C. Weir (Joslin Diabetes Center, Boston, MA, USA) for helpful discussions. We appreciate support from The Kyushu University Research Superstar Program (Drs. Koichi Akashi, Yukitaka Murakami, Hiroshi Gushima, and Kotoku Kurachi), Research Support Center (Dr. Takehiko Yokomizo), and Confocal Core (LSM510META; Dr. Atsushi Takahara). This study was supported by a Grant-in-Aid for Scientific Research (21790285), Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Kyushu University Program Project (P&P), Kyushu University Foundation, Takeda Science Foundation, Astellas Foundation for Research on Metabolic Disorders, and Novo Nordisk Pharma Insulin Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akari Inada.

About this article

Cite this article

Inada, A., Inada, O., Fujii, H. et al. Different effects of islet transplantation and Detemir treatment on the reversal of streptozotocin-induced diabetes associated with β-cell regeneration. Diabetol Int 1, 49–59 (2010). https://doi.org/10.1007/s13340-010-0005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-010-0005-8

Keywords

Navigation