Skip to main content

Advertisement

Log in

Single cell RNA-seq: a novel tool to unravel virus-host interplay

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Over the last decade, single cell RNA sequencing (scRNA-seq) technology has caught the momentum of being a vital revolutionary tool to unfold cellular heterogeneity by high resolution assessment. It evades the inadequacies of conventional sequencing technology which was able to detect only average expression level among cell populations. In the era of twenty-first century, several epidemic and pandemic viruses have emerged. Being an intracellular entity, viruses totally rely on host. Complex virus-host dynamics result when the virus tend to obtain factors from host cell required for its replication and establishment of infection. As a prevailing tool, scRNA-seq is able to understand virus-host interplay by comprehensive transcriptome profiling. Because of technological and methodological advancement, this technology is capable to recognize viral genome and host cell response heterogeneity. Further development in analytical methods with multiomics approach and increased availability of accessible scRNA-seq datasets will improve the understanding of viral pathogenesis that can be helpful for development of novel antiviral therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, Swadling L, Douek DC, Klenerman P, Barnes EJ, Sharpe AH. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res. 2017;45(16):e148–e148.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad SF, Panigrahi M, Chhotaray S, Pal D, Parida S, Bhushan B, Gaur GK, Mishra BP, Singh RK. Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip. Genomics. 2020;112(2):1531–5.

    Article  CAS  PubMed  Google Scholar 

  3. Aicher TP, Carroll S, Raddi G, Gierahn T, Wadsworth MH, Hughes TK, Love C and Shalek AK. Seq-Well: a sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing. Single Cell Methods: Sequencing and Proteomics, 2019 pp.111–132.

  4. Alfaro JA, Bohländer P, Dai M, Filius M, Howard CJ, Van Kooten XF, Ohayon S, Pomorski A, Schmid S, Aksimentiev A, Anslyn EV. The emerging landscape of single-molecule protein sequencing technologies. Nat Meth. 2021;18(6):604–17.

    Article  CAS  Google Scholar 

  5. Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141(4):559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashary N, Bhide A, Chakraborty P, Colaco S, Mishra A, Chhabria K, Jolly MK and Modi D. Single-cell RNA-seq identifies cell subsets in human placenta that highly expresses factors driving pathogenesis of SARS-CoV-2. Front Cell Develop Biol 2020 p.783.

  7. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38(12):1408–14.

    Article  CAS  PubMed  Google Scholar 

  8. Bergen V, Soldatov RA, Kharchenko PV, Theis FJ. RNA velocity—current challenges and future perspectives. Mol Syst Biol. 2021;17(8): e10282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, Blecher-Gonen R, Cohen M, Medaglia C, Li H, Deczkowska A. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell. 2020;181(7):1475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown J, Pirrung M, McCue LA. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics. 2017;33(19):3137–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee A, Ahn A, Rodger EJ, Stockwell PA and Eccles MR (2018) A guide for designing and analyzing RNA-Seq data. Gene expression analysis: methods and protocols, pp.35–80.

  12. Chen D, Zheng L, Xie Y, Zhang C, Liu S, Jiang C, Zhou W and Luo T. Design and numerical study of a bidirectional acoustic microfluidic pump enabled by microcantilever arrays. Electrophoresis. 2023.

  13. Chen G, Ning B, Shi T. Single-cell RNA-seq technologies and related computational data analysis. Front Genet. 2019;10:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Suo S, Tam PP, Han JDJ, Peng G, Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017;12(3):566–80.

    Article  CAS  PubMed  Google Scholar 

  15. Chhotaray S, Panigrahi M, Pal D, Ahmad SF, Bhushan B, Gaur GK, Mishra BP, Singh RK. Ancestry informative markers derived from discriminant analysis of principal components provide important insights into the composition of crossbred cattle. Genomics. 2020;112(2):1726–33.

    Article  CAS  PubMed  Google Scholar 

  16. Christodoulou MI, Zaravinos A. Single-cell analysis in immuno-oncology. Int J Mol Sci. 2023;24(9):8422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ciuffi A, Rato S, Telenti A. Single-cell genomics for virology. Viruses. 2016;8(5):123.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A and Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing. Microbiol Spect. 2023 pp.e00776–23.

  19. Cristinelli S, Ciuffi A. The use of single-cell RNA-Seq to understand virus–host interactions. Curr Opin Virol. 2018;29:39–50.

    Article  CAS  PubMed  Google Scholar 

  20. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

    Article  CAS  PubMed  Google Scholar 

  21. Deich C, Cash B, Sato W, Sharon J, Aufdembrink L, Gaut NJ, Heili J, Stokes K, Engelhart AE, Adamala KP. T7Max transcription system. J Biol Eng. 2023;17(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Delorey TM, Ziegler CG, Heimberg G, Normand R, Yang Y, Segerstolpe Å, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, Jagadeesh KA. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–13.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng X and Thompson JA. An R package for survival-based gene set enrichment analysis 2023.

  24. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural killer cells in SARS-CoV-2 infection: pathophysiology and therapeutic implications. Front Immunol. 2022;13: 888248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimitrov D, Türei D, Garrido-Rodriguez M, Burmedi PL, Nagai JS, Boys C, Ramirez Flores RO, Kim H, Szalai B, Costa IG, Valdeolivas A. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat Commun. 2022;13(1):3224.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Erhard F, Baptista MA, Krammer T, Hennig T, Lange M, Arampatzi P, Jürges CS, Theis FJ, Saliba AE, Dölken L. scSLAM-seq reveals core features of transcription dynamics in single cells. Nature. 2019;571(7765):419–23.

    Article  CAS  PubMed  Google Scholar 

  27. Farek J, Hughes D, Salerno W, Zhu Y, Pisupati A, Mansfield A, Krasheninina O, English AC, Metcalf G, Boerwinkle E, Muzny DM. xAtlas: Scalable small variant calling across heterogeneous next-generation sequencing experiments. GigaScience. 2023;12:p.giac125.

    Article  Google Scholar 

  28. Filby A, Carpenter AE. A new image for cell sorting. N Engl J Med. 2022;386(18):1755–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fan B, Zhou J, Zhao Y, Zhu X, Zhu M, Peng Q, Li J, Chang X, Shi D, Yin J, Guo R. Identification of cell types and transcriptome landscapes of porcine epidemic diarrhea virus-infected porcine small intestine using single-cell RNA sequencing. J Immunol. 2023;210(3):271–82.

    Article  CAS  PubMed  Google Scholar 

  30. Gallardo CM, Nguyen AVT, Routh AL, Torbett BE. Selective ablation of 3′ RNA ends and processive RTs facilitate direct cDNA sequencing of full-length host cell and viral transcripts. Nucleic Acids Res. 2022;50(17):e98–e98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geretz A, Ehrenberg PK, Clifford RJ, Laliberte A, Prelli Bozzo C, Eiser D, Kundu G, Yum LK, Apps R, Creegan M, Gunady M. Single-cell transcriptomics identifies prothymosin α restriction of HIV-1 in vivo. Sci Transl Med. 2023;15(707):eadg0873.

    Article  CAS  PubMed  Google Scholar 

  32. Ghildiyal K, Panigrahi M, Kumar H, Rajawat D, Nayak SS, Lei C, Bhushan B, Dutt T. Selection signatures for fiber production in commercial species: a review. Anim Genet. 2023;54(1):3–23.

    Article  PubMed  Google Scholar 

  33. Gervais O, Peñaloza C, Gratacap R, Papadopoulou A, Beltrán M, Henderson NC, Houston RD, Hassan MA, Robledo D. Understanding host response to infectious salmon anaemia virus in an Atlantic salmon cell line using single-cell RNA sequencing. BMC Genomics. 2023;24(1):161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hagemann-Jensen M, Ziegenhain C, Sandberg R. Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress. Nat Biotechnol. 2022;40(10):1452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hein MY, Weissman JS. Functional single-cell genomics of human cytomegalovirus infection. Nat Biotechnol. 2022;40(3):391–401.

    Article  CAS  PubMed  Google Scholar 

  36. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, Xie SJ, Xiao ZD, Zhang H. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol. 2020;13(1):1–16.

    Article  Google Scholar 

  37. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, Sharifi N, Erzurum S, Eng C, Cheng F. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):1–8.

    Article  Google Scholar 

  38. Hunter MV, Moncada R, Weiss JM, Yanai I, White RM. Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nat Commun. 2021;12(1):6278.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji F, Sadreyev RI. RNA-seq: basic bioinformatics analysis. Curr Protoc Mol Biol. 2018;124(1): e68.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3): e694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, Tu AA, Ziegler CG, Nyquist SK, Wong EB, Ismail N. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat Med. 2020;26(4):511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kar R, Chattopadhyay S, Sharma A, Sharma K, Sinha S, Arimbasseri GAS and Patil VS, (2023) Single-cell transcriptomic and TCR analysis of human Cytomegalovirus (hCMV)-specific memory T cells reveals effector and pre-effectors of CD8+-and CD4+-cytotoxic T cells. bioRxiv, pp.2023–06.

  43. Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, Amit I. MARS-seq20: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protocols. 2019;14(6):1841–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB. Single-cell profiling of Ebola virus disease in vivo reveals viral and host dynamics. Cell. 2020;183(5):1383–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kotliar D, Veres A, Nagy MA, Tabrizi S, Hodis E, Melton DA, Sabeti PC. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife. 2019;8: e43803.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G. Microbial single-cell RNA sequencing by split-pool barcoding. Science. 2021;371(6531):eaba5257.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar H, Panigrahi M, Panwar A, Rajawat D, Nayak SS, Saravanan KA, Kaisa K, Parida S, Bhushan B, Dutt T. Machine-learning prospects for detecting selection signatures using population genomics data. J Comput Biol. 2022;29(9):943–60.

    Article  CAS  PubMed  Google Scholar 

  48. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D. Multi-platform and cross-methodological reproducibility of transcriptome profiling by RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9):915.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin L, Liu Y, Tang X, He D. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Front Public Health. 2021;9: 775224.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM, Milano KM, Tang Z, Pope SD, Song E, Vogels CB, Lu-Culligan WJ. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med. 2021;2(5):591–610.

    Article  CAS  PubMed  Google Scholar 

  51. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, Silva J, Leavy K, Perez-Rosendahl M, Swarup V. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021;53(8):1143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nayak SS, Panigrahi M, Kumar H, Rajawat D, Sharma A, Bhushan B and Dutt T (2023) Evidence for selective sweeps in the MHC gene repertoire of various cattle breeds. Animal Biotechnol, pp.1–7

  55. Pan Y, Cao W, Mu Y, Zhu Q. Microfluidics facilitates the development of single-cell RNA sequencing. Biosensors. 2022;12(7):450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Nayak SS, Ghildiyal K, Kaisa K, Parida S, Bhushan B and Dutt T (2022) Trajectory of livestock genomics in South Asia: A comprehensive review. Gene, p.146808.

  57. Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP and Dutt T, (2023) Landmarks in the history of selective sweeps. Animal Genet.

  58. Pathak SK, Kumar A, Bhuwana G, Sah V, Upmanyu V, Tiwari AK, Sahoo AP, Sahoo AR, Wani SA, Panigrahi M, Sahoo NR. RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs. Funct Integr Genomics. 2017;17:607–20.

    Article  CAS  PubMed  Google Scholar 

  59. Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, Pogson AN, Hein MY, Min KHJ, Wang L, Grody EI. Mapping transcriptomic vector fields of single cells. Cell. 2022;185(4):690–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raghavan V, Kraft L, Mesny F, Rigerte L. A simple guide to de novo transcriptome assembly and annotation. Brief Bioinfo. 2022;23(2):bbab563.

    Article  Google Scholar 

  61. Rajawat D, Panigrahi M, Nayak SS, Ghildiyal K, Sharma A, Kumar H, Parida S, Bhushan B, Gaur GK, Mishra BP and Dutt T (2023) Uncovering genes underlying coat color variation in indigenous cattle breeds through genome-wide positive selection. Animal Biotechnol, pp.1–14.

  62. Rao BH, Souček P, Hlaváč V. Laser capture microdissection: a gear for pancreatic cancer research. Int J Mol Sci. 2022;23(23):14566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raredon MSB, Yang J, Kothapalli N, Lewis W, Kaminski N, Niklason LE, Kluger Y. Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES. Bioinformatics. 2023;39(1):btac775.

    Article  CAS  PubMed  Google Scholar 

  64. Ratnasiri K, Wilk AJ, Lee MJ, Khatri P and Blish CA, (2023 January) Single-cell RNA-seq methods to interrogate virus-host interactions. In Seminars in Immunopathology (Vol. 45, No. 1, pp. 71–89). Berlin/Heidelberg: Springer Berlin Heidelberg.

  65. Reyes M, Filbin MR, Bhattacharyya RP, Billman K, Eisenhaure T, Hung DT, Levy BD, Baron RM, Blainey PC, Goldberg MB, Hacohen N. An immune-cell signature of bacterial sepsis. Nat Med. 2020;26(3):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez-Meira A, O’Sullivan J, Rahman H, Mead AJ. TARGET-Seq: a protocol for high-sensitivity single-cell mutational analysis and parallel RNA sequencing. STAR protocols. 2020;1(3): 100125.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360(6385):176–82.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJ, Bloom JD. Single-cell virus sequencing of influenza infections that trigger innate immunity. J Virol. 2019;93(14):10–1128.

    Article  Google Scholar 

  70. Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, Amblard E, Noel F, Marie Y, Bouteiller D, Medvedovic J. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol. 2021;23(5):538–51.

    Article  CAS  PubMed  Google Scholar 

  71. Saikia M, Burnham P, Keshavjee SH, Wang MF, Heyang M, Moral-Lopez P, Hinchman MM, Danko CG, Parker JS, De Vlaminck I. Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells. Nat Methods. 2019;16(1):59–62.

    Article  CAS  PubMed  Google Scholar 

  72. Salmen F, De Jonghe J, Kaminski TS, Alemany A, Parada GE, Verity-Legg J, Yanagida A, Kohler TN, Battich N, van den Brekel F, Ellermann AL. High-throughput total RNA sequencing in single cells using VASA-seq. Nat Biotechnol. 2022;40(12):1780–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saravanan KA, Rajawat D, Kumar H, Nayak SS, Bhushan B, Dutt T and Panigrahi M Signatures of selection in riverine buffalo populations revealed by genome-wide SNP data. Animal Biotechnol, 2022, pp.1–12.

  74. Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Thakare RP, Banday S, Mishra AK, Das G, Malonia SK. Next-generation sequencing technology: current trends and advancements. Biology. 2023;12(7):997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40.

    Article  CAS  PubMed  Google Scholar 

  76. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science. 2021;371(6536):eabc4552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Setlif I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE, Janowska K, Richardson S, Oosthuysen C, Raju N, Ronsard L, Kanekiyo M. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell. 2019;179(7):1636–46.

    Article  Google Scholar 

  78. Shao F, Huang M, Meng F, Huang Q. Circular RNA signature predicts gemcitabine resistance of pancreatic ductal adenocarcinoma. Front Pharmacol. 2018;9:584.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods. 2017;14(3):267–70.

    Article  CAS  PubMed  Google Scholar 

  80. Shiakolas AR, Kramer KJ, Johnson NV, Wall SC, Suryadevara N, Wrapp D, Periasamy S, Pilewski KA, Raju N, Nargi R, Sutton RE. Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nat Biotechnol. 2022;40(8):1270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Singh M, Al-Eryani G, Carswell S, Ferguson JM, Blackburn J, Barton K, Roden D, Luciani F, Giang Phan T, Junankar S, Jackson K. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat Commun. 2019;10(1):3120.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  82. Stahl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82.

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Stano M, Beke G and Klucar L. viruSITE—integrated database for viral genomics. Database, 2016, p.baw162.

  84. Stassen SV, Siu DM, Lee KC, Ho JW, So HK, Tsia KK. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Bioinformatics. 2020;36(9):2778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Steuerman Y, Cohen M, Peshes-Yaloz N, Valadarsky L, Cohn O, David E, Frishberg A, Mayo L, Bacharach E, Amit I, Gat-Viks I. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 2018;6(6):679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tambe A, Pachter L. Barcode identification for single cell genomics. BMC Bioinform. 2019;20(1):1–9.

    Article  Google Scholar 

  87. Tanaka N, Katayama S, Reddy A, Nishimura K, Niwa N, Hongo H, Ogihara K, Kosaka T, Mizuno R, Kikuchi E, Mikami S. Single-cell RNA-seq analysis reveals the platinum resistance gene COX7B and the surrogate marker CD63. Cancer Med. 2018;7(12):6193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  89. Tirumurugaan KG, Pawar RM, Dhinakar Raj G, Thangavelu A, Hammond JA, Parida S. RNAseq reveals the contribution of interferon stimulated genes to the increased host defense and decreased PPR viral replication in cattle. Viruses. 2020;12(4):463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 2020;65(12):1075–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tu AA, Gierahn TM, Monian B, Morgan DM, Mehta NK, Ruiter B, Shreffler WG, Shalek AK, Love JC. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat Immunol. 2019;20(12):1692–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Wen Y, Xie X, Liu Y, Tan X, Cai Q, Zhang Y, Cheng L, Xu G, Zhang S, Wang H. Dysregulated hematopoiesis in bone marrow marks severe COVID-19. Cell Discov. 2021;7(1):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang X, Wu X, Hong N and Jin W. Progress in single-cell multimodal sequencing and multi-omics data integration. Biophys Rev 2023 pp.1–16.

  95. Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58(4):598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilk AJ, Shalek AK, Holmes S, Blish CA (2022) Comparative analysis of cell-cell communication at single-cell resolution. bioRxiv 2022.02.04.479209.

  97. Wilk AJ, Lee MJ, Wei B, Parks B, Pi R, Martínez-Colón GJ, Ranganath T, Zhao NQ, Taylor S, Becker W. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J Exp Med. 2021;218(8): e20210582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, Ivison GT, Ranganath T, Vergara R, Hollis T, Simpson LJ. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wimmers F, Donato M, Kuo A, Ashuach T, Gupta S, Li C, Dvorak M, Foecke MH, Chang SE, Hagan T, De Jong SE. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell. 2021;184(15):3915–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu TTH, Travaglini KJ, Rustagi A, Xu D, Zhang Y, Jang SK, Gillich A, Dehghannasiri R, Martinez-Colon G, Beck A, Wilk AJ. Activated interstitial macrophages are a predominant target of viral takeover and focus of inflammation in COVID-19 initiation in human lung. Biorxiv, 2022 pp.2022–05.

  101. Wu W, Zhang J, Cao X, Cai Z, Zhao F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat Commun. 2022;13(1):3242.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, Walch-Ruckheim B, Bosse J, Rajewsky N, Grässer F, Akalin A. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun. 2019;10(1):4878.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu C, Prete M, Webb S, Jardine L, Stewart B, Hoo R, He P and Teichmann S. Automatic cell type harmonization and integration across Human Cell Atlas datasets. bioRxiv, 2023 pp.2023–05.

  104. Yoo BC, Kim KH, Woo SM, Myung JK. Clinical multi-omics strategies for the effective cancer management. J Proteomics. 2018;188:97–106.

    Article  CAS  PubMed  Google Scholar 

  105. Yuan Y, Wang X, Li J, Han L, Du H, Sun Y, Yang P, Zhou Z, Gu M, Lu Y, Shen C. Single-cell sequencing yields insights in the evolution of foot-and-mouth disease virus persistent infection. Front Cell Infect Microbiol. 2022;12: 940906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yadav S, Mehta P, Soni J, Chattopadhyay P, Devi P, Habyarimana T, Tardalkar K, Joshi M and Pandey R. Single-cell RNA-Seq reveals intracellular microbial diversity within immune cells during SARS-CoV-2 infection and recovery. Iscience, 2023 26(11).

  107. Zanini F, Robinson ML, Croote D, Sahoo MK, Sanz AM, Ortiz-Lasso E, Albornoz LL, Rosso F, Montoya JG, Goo L, Pinsky BA. Virus-inclusive single-cell RNA sequencing reveals the molecular signature of progression to severe dengue. Proc Natl Acad Sci. 2018;115(52):E12363–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zeden MS and Gründling A. Small-scale illumina library preparation using the illumina Nextera XT DNA Library Preparation Kit. Cold Spring Harbor Protocols 2023.

  109. Zhang L, Dong X, Lee M, Maslov AY, Wang T, Vijg J. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. Proc Natl Acad Sci. 2019;116(18):9014–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnol. 2021;19:1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit Panigrahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jogi, H.R., Smaraki, N., Nayak, S.S. et al. Single cell RNA-seq: a novel tool to unravel virus-host interplay. VirusDis. (2024). https://doi.org/10.1007/s13337-024-00859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13337-024-00859-w

Keywords

Navigation