Skip to main content

Advertisement

Log in

Integrated point-of-care RT-PCR methods during and after COVID-19 pandemic

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic has taken the world by surprise and people and organisations worldwide worked in some way or the other to combat the spread; isolate from the infected and get back to normal life, as it was before the pandemic hit. In this regard, the diagnosis of COVID-19 was at the centre of control and prevention and have seen a vehement change in every aspect, especially development of point-of-care testing for better and quick diagnosis. Among different types of techniques developed, the most important was the RT-PCR method of detection which detects nucleic acid of the virus in samples. RT-PCR is a laboratory-based method requiring trained professionals and precise steps for accurate testing. With the advent and spread of the pandemic, number of RT-PCR diagnostic centres rose significantly, and the detection process became less cumbersome, easy to use, ability to handle large volume of samples, more accurate, less time-consuming, and cost-effective. Different industries developed RT-PCR kits, reducing the efforts to prepare laboratory samples. Machines were employed for labour-driven tasks in PCR testing. In addition, new age technologies such as artificial intelligence, IoT, digital systems were combined with RT-PCR for accurate and easy testing. In this review, point-of-care RT-PCR methods, when the COVID-19 started, and the methods now, has been compared on the basis of technological advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McIntosh K, Hirsch M S, and Bloom A. COVID-19: Epidemiology, virology, and prevention. UpToDate. Available online: https://www.uptodate.com/contents/covid-19-epidemiology-virology-and-prevention (Accessed on 20 Mar 2023).

  2. Eftekhari A, Alipour M, Chodari L, Maleki Dizaj S, Ardalan M, Samiei M, Sharifi S, Zununi Vahed S, Huseynova I, Khalilov R, Ahmadian E, Cucchiarini M. A comprehensive review of detection methods for SARS-CoV-2. Microorganisms. 2021;9(2):232. https://doi.org/10.3390/microorganisms9020232.PMID:33499379;PMCID:PMC7911200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Available online on: https://covid19.who.int/ (Accessed on 10 Oct 2022).

  4. Sharma S, Shrivastava S, Kausley SB, Rai B, Pandit AB. Coronavirus: a comparative analysis of detection technologies in the wake of emerging variants. Infection. 2022;5(1):1–19.

    Article  Google Scholar 

  5. Teymouri M, Mollazadeh S, Mortazavi H, Ghale-Noie ZN, Keyvani V, Aghababaei F, Mirzaei H. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol Res Pract. 2021;221:153443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cupić M, Lazarević I, Knezević A, Stanojević M. Conventional and molecular methods in diagnosis and monitoring of viral infection. Srp Arh Celok Lek. 2007;135(9–10):589–93.

    PubMed  Google Scholar 

  7. Available online on: https://www.icmr.gov.in/pdf/covid/kits/archive/RT_PCR_Tests_Kits_Evaluation_Summ_17112020.pdf (Accessed on 10 Oct 2022).

  8. Available online on: https://www.finddx.org/covid-19/pipeline/ (Accessed on 10 Oct 2022).

  9. Cho H, Jung YH, Cho HB, Kim HT, Kim KS. Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Clin Chim Acta. 2020;511:149–53. https://doi.org/10.1016/j.cca.2020.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Available online on: https://www.thehindu.com/sci-tech/health/igib-develops-future-proof-primers-kits-for-rt-pcr-test/article38384374.ece (Accessed on 24 Apr 2023).

  11. Kumar D, Malviya R, Sharma PK. Corona virus: a review of COVID-19. EJMO. 2020;4(1):8–25.

    Google Scholar 

  12. Available online on: https://www.thermofisher.com/blog/clinical-conversations/the-s-gene-advantage-taqpath-covid-19-tests-may-help-with-early-identification-of-omicron-variant/ (Accessed on 24 Apr 2023)

  13. Available online on: https://www.downtoearth.org.in/news/health/what-is-omisure-india-s-first-rt-pcr-kit-that-identifies-omicron-in-under-4-hours-81002 (Accessed on 10 Oct 2022).

  14. Polatoğlu I, Oncu-Oner T, Dalman I, Ozdogan S. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2 diagnostic tests, and vaccine & drug development studies. MedComm. 2023;4(2):e228. https://doi.org/10.1002/mco2.228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Favaro M, Mattina W, Pistoia ES, Gaziano R, Di Francesco P, Middleton S, D’Angelo S, Altarozzi T, Fontana C. A new qualitative RT-PCR assay detecting SARS-CoV-2. Sci Rep. 2021;11(1):18955. https://doi.org/10.1038/s41598-021-98114-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mardian Y, Kosasih H, Karyana M, Neal A, Lau CY. Review of current COVID-19 diagnostics and opportunities for further development. Front Med. 2021;8:615099.

    Article  Google Scholar 

  17. Zhu N, Wong PK. Advances in viral diagnostic technologies for combating COVID-19 and future pandemics. SLAS Technol. 2020;25(6):513–21. https://doi.org/10.1177/2472630320953798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta N, Augustine S, Narayan T, O’Riordan A, Das A, Kumar D, Malhotra BD. Point-of-care PCR assays for COVID-19 detection. Biosensors. 2021;11(5):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alanzi T. A review of mobile applications available in the app and google play stores used during the COVID-19 outbreak. J Multidiscip Healthc. 2021;14:45.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Available online on: https://www.thehindu.com/sci-tech/health/igib-develops-future-proof-primers-kits-for-rt-pcr-test/article38384374.ece (Accessed on 20 June 2023).

  21. Blumenfeld NR, Bolene MAE, Jaspan M, et al. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis. Nat Nanotechnol. 2022;17:984–92. https://doi.org/10.1038/s41565-022-01175-4.

    Article  CAS  PubMed  Google Scholar 

  22. Young RM, Solis CJ, Barriga-Fehrman A, Abogabir C, Thadani AR, Labarca M, Bustamante E, Tapia CV, Sarda AG, Sepulveda F, Pozas N, Cerpa LC, Lavanderos MA, Varela NM, Santibañez A, Sandino AM, Reyes-Lopez F, Dixon G, Quiñones LA. Smartphone screen testing, a novel pre-diagnostic method to identify SARS-CoV-2 infectious individuals. Elife. 2021;10:e70333. https://doi.org/10.7554/eLife.70333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Available online on: https://www.credodxbiomed.com/en/products/systems/vitapcr (Accessed on 20 June 2023).

  24. Tan M, et al. Recent advances in recombinase polymerase amplification: principle, advantages, disadvantages and applications. Front Cell Infect Microbiol. 2022;12:1744.

    Article  Google Scholar 

  25. Damin F, Galbiati S, Gagliardi S, Cereda C, Dragoni F, Fenizia C, Savasi V, Sola L, Chiari M. CovidArray: a microarray-based assay with high sensitivity for the detection of Sars-Cov-2 in nasopharyngeal swabs. Sensors. 2021;21(7):2490. https://doi.org/10.3390/s21072490.PMID:33916661;PMCID:PMC8038375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mei X, Lee HC, Diao KY, Huang M, Lin B, Liu C, Xie Z, Ma Y, Robson PM, Chung M, Bernheim A. Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224–8. https://doi.org/10.1038/s41591-020-0931-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomes JC, Masood AI, Silva LHDS, da Cruz Ferreira JRB, Freire Junior AA, Rocha ALDS, Dos Santos WP. Covid-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences. Sci Rep. 2021;11(1):1–28.

    Article  Google Scholar 

  28. Horejs C. Artificially intelligent nanopore for rapid SARS-CoV-2 testing. Nat Rev Mater. 2021;6(8):650–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nasajpour M, Pouriyeh S, Parizi RM, Dorodchi M, Valero M, Arabnia HR. Internet of things for current COVID-19 and future pandemics: an exploratory study. J Healthc Inform Res. 2020;4(4):325–64.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu H, Podesva P, Liu X, Zhang H, Teply T, Xu Y, Neuzil P. IoT PCR for pandemic disease detection and its spread monitoring. Sens Actuat B: Chem. 2020;303:127098.

    Article  CAS  Google Scholar 

  31. Available online on: https://www.thermofisher.com/in/en/home/life-science/pcr/digital-pcr/quantstudio-absolute-q-system.html (Accessed on 10 Oct 2022).

  32. Vasudevan HN, Xu P, Servellita V, Miller S, Liu L, Gopez A, Abate AR. Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Sci Rep. 2021;11(1):1–9.

    Article  Google Scholar 

  33. In vitro diagnostics EUAs. Available online: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19 -emergency-use-authorizations-medical-devices/vitro-diagnostics-euas (Accessed on 10 Feb 2021).

  34. Chen X, Liu Y, Zhan X, Gao Y, Sun Z, Wen W, Zheng W. Ultrafast PCR detection of COVID-19 by using a microfluidic chip-based system. Bioengineering. 2022;9(10):548. https://doi.org/10.3390/bioengineering9100548.PMID:36290516;PMCID:PMC9598518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-a comparison with other viral detection methods. Chem Eng J. 2021;420:127575.

    Article  CAS  PubMed  Google Scholar 

  36. Chaibun T, Puenpa J, Ngamdee T, Boonapatcharoen N, Athamanolap P, O’Mullane AP, Lertanantawong B. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun. 2021;12(1):1–10.

    Article  Google Scholar 

  37. Ji M, Xia Y, Loo JFC, Li L, Ho HP, He J, Gu D. Automated multiplex nucleic acid tests for rapid detection of SARS-CoV-2, influenza A and B infection with direct reverse-transcription quantitative PCR (dirRT-qPCR) assay in a centrifugal microfluidic platform. RSC Adv. 2020;10(56):34088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, Orkin CM. Monkeypox virus infection in humans across 16 countries—April–June 2022. New Engl J Med. 2022;387(8):679–91.

    Article  CAS  PubMed  Google Scholar 

  39. Available online on: https://www.who.int/news-room/fact-sheets/detail/monkeypox (Accessed on 10 Oct 2022).

  40. Available online on : https://health.economictimes.indiatimes.com/news/diagnostics/trivitron-healthcare-announces-development-of-real-time-pcr-based-kit-for-monkeypox-virus/91834856 (Accessed on 16 Oct 2022).

  41. Available online on : https://www.einnews.com/pr_news/588282670/digital-pcr-and-real-time-pcr-qpcr-market-future-business-opportunities-2022-2028-abbott-laboratories (Accessed on 16 Oct 2022).

  42. Available online on https://www.iaea.org/bulletin/how-is-the-covid-19-virus-detected-using-real-time-rt-pcr (Accessed on 20 June 2023).

  43. Byrnes SA, Gallagher R, Steadman A, Bennett C, Rivera R, Ortega C, Motley ST, Jain P, Weigl BH, Connelly JT. Multiplexed and extraction-free amplification for simplified SARS-CoV-2 RT-PCR tests. Anal Chem. 2021;93(9):4160–5.

    Article  CAS  PubMed  Google Scholar 

  44. Available online on https://www.biospectrumindia.com/news/97/20598/tata-mds-upgraded-omisure-detects-all-omicron-variants.html (Accessed on 20 June 2023).

  45. Nguyen PQ, Wang M, Ann Maria N, Li AY, Tan HY, Xiong GM, Tan MK, Bhagat AA, Ong CW, Lim CT. Modular micro-PCR system for the onsite rapid diagnosis of COVID-19. Microsyst Nanoeng. 2022;8(1):82. https://doi.org/10.1038/s41378-022-00400-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Available online on https://www.medicaldesignbriefs.com/component/content/article/mdb/insiders/mdb/stories/46575 (Accessed on 20 June 2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar B. Kausley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Shrivastava, S., Kausley, S.B. et al. Integrated point-of-care RT-PCR methods during and after COVID-19 pandemic. VirusDis. 34, 356–364 (2023). https://doi.org/10.1007/s13337-023-00834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-023-00834-x

Keywords

Navigation