Skip to main content

Advertisement

Log in

Potential role of human papillomavirus proteins associated with the development of cancer

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: “low-risk” and “high-risk.” As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term “papillomaviruses” refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

HPV:

Human Papilloma virus

URR:

Upstream regulatory region

LCR:

Long control region

HSV:

Human Sarcoma virus

HIV:

Human immuno virus

WHO:

World health organization

ICC:

Invasive cervical cancer

LSIC:

Low grade squamous intraepithelial lesions

HSIC:

High grade squamous intraepithelial lesions

ASCUS:

Atypical squamous cells of undetermined significance

ORF:

Open reading frames

References

  1. Aksoy P, Gottschalk EY, Meneses PI. HPV entry into cells. Mutat Res Rev Mutat Res. 2017. https://doi.org/10.1016/j.mrrev.2016.09.004.

    Article  PubMed  Google Scholar 

  2. Apt D, Watts RM, Suske G, Bernard HU. High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology. 1996. https://doi.org/10.1006/viro.1996.0530.

    Article  PubMed  Google Scholar 

  3. Bansal A, Singh MP, Rai B. Human papillomavirus-associated cancers: a growing global problem. Int J Appl Basic Med Res. 2016. https://doi.org/10.4103/2229-516X.179027.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bassi C, Li YT, Khu K, Mateo F, Baniasadi PS, Elia A, Mason J, Stambolic V, Pujana MA, Mak TW, Gorrini C. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death Differ. 2016. https://doi.org/10.1038/cdd.2015.173.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology. 2013. https://doi.org/10.1016/j.virol.2013.07.020.

    Article  PubMed  Google Scholar 

  6. Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology. 2013;445(1–2):35–56.

    Article  CAS  Google Scholar 

  7. Brimer N, Lyons C, Vande Pol SB. Association of E6AP (UBE3A) with human papillomavirus type 11 E6 protein. Virology. 2007. https://doi.org/10.1016/j.virol.2006.08.038.

    Article  PubMed  Google Scholar 

  8. Bronnimann MP, Calton CM, Chiquette SF, Li S, Lu M, Chapman JA, Bratton KN, Schlegel AM, Campos SK. Furin cleavage of L2 during papillomavirus infection: minimal dependence on cyclophilins. J Virol. 2016. https://doi.org/10.1128/JVI.00038-16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, Brotons M, Mena M, Cosano R, Muñoz J. Human papillomavirus and related diseases in Kenya. Summary report. 2016.

  10. Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003. https://doi.org/10.1128/CMR.16.1.1-17.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Castro-Muñoz LJ, Manzo-Merino J, Muñoz-Bello JO, Olmedo-Nieva L, Cedro-Tanda A, Alfaro-Ruiz LA, Hidalgo-Miranda A, Madrid-Marina V, Lizano M. The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-49886-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Celegato M, Messa L, Bertagnin C, Mercorelli B, Loregian A. Targeted disruption of E6/p53 binding exerts broad activity and synergism with paclitaxel and topotecan against HPV-transformed cancer cells. Cancers. 2022;14(1):193.

    Article  CAS  Google Scholar 

  13. Celewicz A, Celewicz M, Michalczyk M, Rzepka R. Perspectives in HPV secondary screening and personalized therapy basing on our understanding of HPV-related carcinogenesis pathways. Mediators Inflamm. 2020. https://doi.org/10.1155/2020/2607594.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cerqueira C, SamperioVentayol P, Vogeley C, Schelhaas M. Kallikrein-8 proteolytically processes human papillomaviruses in the extracellular space to facilitate entry into host cells. J Virol. 2015. https://doi.org/10.1128/JVI.00234-15.

    Article  PubMed  PubMed Central  Google Scholar 

  15. DiGiuseppe S, Bienkowska-Haba M, Guion LGM, Keiffer TR, Sapp M. Human papillomavirus major capsid protein L1 remains associated with the incoming viral genome throughout the entry process. J Virol. 2017. https://doi.org/10.1128/JVI.00537-17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. DiMaio D, Mattoon D. Mechanisms of cell transformation by papillomavirus E5 proteins. Oncogene. 2001. https://doi.org/10.1038/sj.onc.1204915.

    Article  PubMed  Google Scholar 

  17. DiMaio D, Petti LM. The E5 proteins. Virology. 2013. https://doi.org/10.1016/j.virol.2013.05.006.

    Article  PubMed  Google Scholar 

  18. DiMaio D, Petti LM. The E5 proteins. Virology. 2013;445(1–2):99–114.

    Article  CAS  Google Scholar 

  19. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006. https://doi.org/10.1042/CS20050369.

    Article  Google Scholar 

  20. Doorbar J. The E4 protein; structure, function and patterns of expression. Virology. 2013. https://doi.org/10.1016/j.virol.2013.07.008.

    Article  PubMed  Google Scholar 

  21. Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV oncoproteins and the ubiquitin proteasome system: a signature of malignancy? Pathogens. 2020. https://doi.org/10.3390/pathogens9020133.

    Article  PubMed  PubMed Central  Google Scholar 

  22. D’Souza G, Dempsey A. The role of HPV in head and neck cancer and review of the HPV vaccine. Prev Med. 2011;53(Suppl 1):S5-11.

    Article  Google Scholar 

  23. Elrefaey S, Massaro MA, Chiocca S, Chiesa F, Ansarin M. HPV in oropharyngeal cancer: the basics to know in clinical practice. Acta Otorhinolaryngol Ital. 2014;34(5):299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Favre M. Structural polypeptides of rabbit, bovine, and human papillomaviruses. J Virol. 1975. https://doi.org/10.1128/JVI.15.5.1239-1247.1975.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Freitas de AC, de Oliveira THA, Barros MR Jr, Venuti A. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. J Exp Clin Cancer Res. 2017. https://doi.org/10.1186/s13046-017-0541-1.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ganesan S, Subbiah VN, Michael JC. Associated factors with cervical pre-malignant lesions among the married fisher women community at Sadras, Tamil Nadu. Asia Pac J Oncol Nurs. 2015;2(1):42–50. https://doi.org/10.4103/2347-5625.146223.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gao G, Smith DI. Human papillomavirus and the development of different cancers. Cytogenet Genome Res. 2016. https://doi.org/10.1159/000458166.

    Article  PubMed  Google Scholar 

  28. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006. https://doi.org/10.1038/sj.onc.1209615.

    Article  PubMed  Google Scholar 

  29. Gillison ML, Chaturvedi AK, Lowy DR. HPV prophylactic vaccines and the potential prevention of noncervical cancers in both men and women. Cancer. 2008;113(10 Suppl):3036–46.

    Article  Google Scholar 

  30. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002. https://doi.org/10.1152/physrev.00027.2001.

    Article  PubMed  Google Scholar 

  31. Graham SV. Human papillomavirus E2 protein: linking replication, transcription, and RNA processing. J Virol. 2016. https://doi.org/10.1128/JVI.00502-16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Graham SV. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond). 2017. https://doi.org/10.1042/CS20160786.

    Article  PubMed Central  Google Scholar 

  33. Grm HS, Massimi P, Gammoh N, Banks L. Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene. 2005;24(33):5149–64.

    Article  Google Scholar 

  34. Harden ME, Munger K. Human papillomavirus molecular biology. Mutat Res Rev Mutat Res. 2017. https://doi.org/10.1016/j.mrrev.2016.07.002.

    Article  PubMed  Google Scholar 

  35. Houlihan CF, Baisley K, Bravo IG, Pavón MA, Changalucha J, Kapiga S, De Sanjosé S, Ross DA, Hayes RJ, Watson-Jones D. Human papillomavirus DNA detected in fingertip, oral and bathroom samples from unvaccinated adolescent girls in Tanzania. Sex Transm Infect. 2019. https://doi.org/10.1136/sextrans-2018-053756.

    Article  PubMed  Google Scholar 

  36. Howley PM, Pfister HJ. Beta genus papillomaviruses and skin cancer. Virology. 2015;479–480:290–6. https://doi.org/10.1016/j.virol.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  37. Hull R, Mbele M, Makhafola T, Hicks C, Wang SM, Reis RM, Mehrotra R, Mkhize-Kwitshana Z, Kibiki G, Bates DO, Dlamini Z. Cervical cancer in low and middle-income countries. Oncol Lett. 2020. https://doi.org/10.3892/ol.2020.11754.

    Article  PubMed  PubMed Central  Google Scholar 

  38. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Huma. 2012;100:1–441.

    Google Scholar 

  39. Jayavardhini B, Kumar C, Vijayashree R, Vedakumari SW. Recent Advancements in Nanomedicine for Cancer Diagnosis. NanoBioMedicine.:63.

  40. Jha S, Vande Pol S, Banerjee NS, Dutta AB, Chow LT, Dutta A. Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell. 2010. https://doi.org/10.1016/j.molcel.2010.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kurg R. The role of E2 proteins in papillomavirus DNA replication. In: DNA replication-current advances. London: IntechOpen; 2011.

    Google Scholar 

  42. Laaneväli A, Ustav M, Ustav E, Piirsoo M. E2 protein is the major determinant of specificity at the human papillomavirus origin of replication. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0224334.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Letian T, Tianyu Z. Cellular receptor binding and entry of human papillomavirus. Virol J. 2010. https://doi.org/10.1186/1743-422X-7-2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mahal BA, Catalano PJ, Haddad RI, Hanna GJ, Kass JI, Schoenfeld JD, Tishler RB, Margalit DN. Incidence and demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. Cancer Epidemiol Biomarkers Prev. 2019. https://doi.org/10.1158/1055-9965.EPI-19-0038.

    Article  PubMed  Google Scholar 

  45. Marklund L, Hammarstedt L. Impact of HPV in oropharyngeal cancer. J Oncol. 2011. https://doi.org/10.1155/2011/509036.

    Article  PubMed  Google Scholar 

  46. Martel de C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020. https://doi.org/10.1016/S2214-109X(19)30488-7.

    Article  PubMed  Google Scholar 

  47. McBride AA. The papillomavirus E2 proteins. Virology. 2013. https://doi.org/10.1016/j.virol.2013.06.006.

    Article  PubMed  Google Scholar 

  48. McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology. 2009. https://doi.org/10.1016/j.virol.2008.10.006.

    Article  PubMed  Google Scholar 

  49. Mirabello L, Yeager M, Yu K, Clifford GM, Xiao Y, Zhu B, Cullen M, Boland JF, Wentzensen N, Nelson CW, Raine-Bennett T, Chen Z, Bass S, Song L, Yang Q, Steinberg M, Burdett L, Dean M, Roberson D, Mitchell J, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Kreimer AR, Beachler DC, Hildesheim A, Gonzalez P, Porras C, Burk RD, Schiffman M. HPV16 E7 genetic conservation is critical to carcinogenesis. Cell. 2017. https://doi.org/10.1016/j.cell.2017.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mirghani H, Amen F, Blanchard P, Moreau F, Guigay J, Hartl DM, et al. Treatment de-escalation in HPV-positive oropharyngeal carcinoma: Ongoing trials, critical issues and perspectives. Int J Cancer. 2015;136:1494–503.

    Article  CAS  Google Scholar 

  51. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60.

    Article  CAS  Google Scholar 

  52. Mühr L, Eklund C, Dillner J. Towards quality and order in human papillomavirus research. Virology. 2018. https://doi.org/10.1016/j.virol.2018.04.003.

    Article  PubMed  Google Scholar 

  53. Müller M, Prescott EL, Wasson CW, Macdonald A. Human papillomavirus E5 oncoprotein: function and potential target for antiviral therapeutics. Futur Virol. 2015;10(1):27–39.

    Article  Google Scholar 

  54. Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007;98(10):1505–11.

    Article  CAS  Google Scholar 

  55. Nascimento KC. Avaliação da presença do Papilomavírushumano (HPV) no sangueperiférico de mulheres com lesõesintraepiteliais de alto grau e baixograu (Master's thesis, Universidade Federal de Pernambuco).

  56. Nishimura A, Ono T, Ishimoto A, Dowhanick JJ, Frizzell MA, Howley PM, Sakai H. Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J Virol. 2000. https://doi.org/10.1128/jvi.74.8.3752-3760.2000.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4:e609–16. https://doi.org/10.1016/S2214-109X(16)30143-7.

    Article  PubMed  Google Scholar 

  58. Pytynia KB, Dahlstrom KR, Sturgis EM. Epidemiology of HPV-associated oropharyngeal cancer. Oral Oncol. 2014. https://doi.org/10.1016/j.oraloncology.2013.12.019.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Quint KD, Genders RE, de Koning MN, Borgogna C, Gariglio M, Bouwes Bavinck JN, Doorbar J, Feltkamp MC. Human Beta-papillomavirus infection and keratinocyte carcinomas. J Pathol. 2015;235:342–54. https://doi.org/10.1002/path.4425.

    Article  CAS  PubMed  Google Scholar 

  60. Sailer C, Offensperger F, Julier A, Kammer KM, Walker-Gray R, Gold MG, Scheffner M, Stengel F. Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-06953-0.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sakakibara N, Mitra R, McBride AA. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J Virol. 2011. https://doi.org/10.1128/JVI.00541-11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 2009. https://doi.org/10.1111/j.1742-4658.2009.07400.x.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Senkomago V, Henley SJ, Thomas CC, Mix JM, Markowitz LE, Saraiya M. Human papillomavirus-attributable cancers—United States, 2012–2016. MMWR Morb Mortal Wkly Rep. 2019. https://doi.org/10.15585/mmwr.mm6833a3.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shoja Z, Farahmand M, Hosseini N, Jalilvand S. A meta-analysis on human papillomavirus type distribution among women with cervical neoplasia in the WHO eastern mediterranean region. Intervirology. 2019. https://doi.org/10.1159/000502824.

    Article  PubMed  Google Scholar 

  65. Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci. 2018. https://doi.org/10.1007/s00018-018-2848-2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stanley MA, Winder DM, Sterling JC, Goon PK. HPV infection, anal intra-epithelial neoplasia (AIN) and anal cancer: Current issues. BMC Cancer. 2012;12:398.

    Article  Google Scholar 

  67. Subbaiah VK, Zhang Y, Rajagopalan D, Abdullah LN, Yeo-Teh NS, Tomaić V, Banks L, Myers MP, Chow EK, Jha S. E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to destabilize tumor suppressor TIP60. Oncogene. 2016. https://doi.org/10.1038/onc.2015.268.

    Article  PubMed  Google Scholar 

  68. Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol. 2012;5(8):726–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011. https://doi.org/10.1186/1476-4598-10-140.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wallace NA, Galloway DA. Novel functions of the human papillomavirus E6 oncoproteins. Annu Rev Virol. 2015. https://doi.org/10.1146/annurev-virology-100114-055021.

    Article  PubMed  Google Scholar 

  71. Wang X, Meyers C, Wang H-K, Chow LT, Zheng Z-M. Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol. 2011;85(16):8080–92.

    Article  CAS  Google Scholar 

  72. Wang JW, Roden RB. L2, the minor capsid protein of papillomavirus. Virology. 2013. https://doi.org/10.1016/j.virol.2013.04.017.

    Article  PubMed  Google Scholar 

  73. Yajid AI, Zakariah MA, Mat Zin AA, Othman NH. Potential role of E4 protein in human papillomavirus screening: a review. Asian Pac J Cancer Prev. 2017. https://doi.org/10.22034/APJCP.2017.18.2.315.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005. https://doi.org/10.4143/crt.2005.37.6.319.

    Article  PubMed  PubMed Central  Google Scholar 

  75. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002. doi: https://doi.org/10.1038/nrc798.

Download references

Acknowledgements

The authors thank the Chettinad Academy of Research Education for the constant support and encouragement.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Veerabathiran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to report.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the manuscript.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, D., Kalarani, I.B., Mohammed, V. et al. Potential role of human papillomavirus proteins associated with the development of cancer. VirusDis. 33, 322–333 (2022). https://doi.org/10.1007/s13337-022-00786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-022-00786-8

Keywords

Navigation