Skip to main content

Advertisement

Log in

In-silico evidence for enhancement of avian influenza virus H9N2 virulence by modulation of its hemagglutinin (HA) antigen function and stability during co-infection with infectious bronchitis virus in chickens

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

In the last few decades, frequent incidences of avian influenza (AI) H9N2 outbreaks have caused high mortality in poultry farms resulting in colossal economic losses in several countries. In Egypt, the co-infection of H9N2 with the infectious bronchitis virus (IBV) has been observed extensively during these outbreaks. However, the pathogenicity of H9N2 in these outbreaks remained controversial. The current study reports isolation and characterization of the H9N2 virus recovered from a concurrent IBV infected broiler chicken flock in Egypt during 2011. The genomic RNA was subjected to RT-PCR amplification followed by sequencing and analysis. The deduced amino acid sequences of the eight segments of the current study H9N2 isolate were compared with those of Egyptian H9N2 viruses isolated from healthy and diseased chicken flocks from 2011 to 2013. In the phylogenetic analysis, the current study isolate was found to be closely related to the other Egyptian H9N2 viruses. Notably, no particular molecular characteristic difference was noticed among all the Egyptian H9N2 isolates from apparently healthy, diseased or co-infected with IBV chicken flocks. Nevertheless, in-silico analysis, we noted modulation of stability and motifs structure of Hemagglutinin (HA) antigen among the co-infecting H9N2 AI and the IBV and isolates from the diseased flocks. The findings suggest that the putative factor for enhancement of the H9N2 pathogenicity could be co-infection with other respiratory pathogens such as IBV that might change the HA stability and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. AboElkhair M, Bazid AI, Abd El-Razak AG, Zidan SA, Sultan H. The role of avian influenza virus (subtypes H9 and H5) and avian infectious bronchitis virus in an outbreak associated with high mortality in poultry flocks in Egypt during 2012. Benha Vet Med J. 2014;27:21–8.

    Google Scholar 

  2. Arafa A-S, Hagag N, Erfan A, Mady W, El-Husseiny M, Adel A, Nasef S. Complete genome characterization of avian influenza virus subtype H9N2 from a commercial quail flock in Egypt. Virus Genes. 2012;45:283–94.

    Article  CAS  PubMed  Google Scholar 

  3. Arafat N, Eladl AH, Marghani BH, Saif MA, El-Shafei RA. Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens. Vet Microbiol. 2018;219:8–16. https://doi.org/10.1016/j.vetmic.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  4. Attwood TK, Bongcam-Rudloff E, Brazas ME, Corpas M, Gaudet P, Lewitter F, Mulder N, Palagi PM, Schneider MV, van Gelder CW. Correction: GOBLET: the global organisation for bioinformatics learning. Educ Train PLoS Comput Biol. 2015;11:e1004281. https://doi.org/10.1371/journal.pcbi.1004281.

    Article  CAS  Google Scholar 

  5. Baigent SJ, McCauley JW. Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. BioEssays. 2003;25:657–71. https://doi.org/10.1002/bies.10303.

    Article  CAS  PubMed  Google Scholar 

  6. Bano S, Naeem K, Malik SA. Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis. 2003;47:817–22. https://doi.org/10.1637/0005-2086-47.s3.817.

    Article  CAS  PubMed  Google Scholar 

  7. Baron J, Tarnow C, Mayoli-Nüssle D, Schilling E, Meyer D, Hammami M, Schwalm F, Steinmetzer T, Guan Y, Garten W. Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol. 2013;87:1811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benkert P, Tosatto SC, Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71:261–77. https://doi.org/10.1002/prot.21715.

    Article  CAS  PubMed  Google Scholar 

  9. Benkert P, Kunzli M, Schwede T. QMEAN server for protein model quality estimation. Nucl Acids Res. 2009;37:W510–4. https://doi.org/10.1093/nar/gkp322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343–50. https://doi.org/10.1093/bioinformatics/btq662.

    Article  CAS  PubMed  Google Scholar 

  11. Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, MacDonell C, Lin G, Lu P, Wishart DS. PROSESS: a protein structure evaluation suite and server. Nucl Acids Res. 2010;38:W633–40. https://doi.org/10.1093/nar/gkq375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res. 2014;42:W252–8. https://doi.org/10.1093/nar/gku340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2009;4:1–13. https://doi.org/10.1038/nprot.2008.197.

    Article  CAS  PubMed  Google Scholar 

  14. Capua I, Alexander DJ. Avian influenza infection in birds: a challenge and opportunity for the poultry veterinarian. Poult Sci. 2009;88:842–6. https://doi.org/10.3382/ps.2008-00289.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng J, Baldi P. Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinform. 2007;8:113. https://doi.org/10.1186/1471-2105-8-113.

    Article  CAS  Google Scholar 

  16. Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin NM, Gonzalez C, Ismail MM, Al-Ankari AR, Al-Blowi MH, Khan OA, Maken Ali AS, Hedayati A, Garcia Garcia J, Ziay GM, Shoushtari A, Al Qahtani KN, Capua I, Holmes EC, Cattoli G. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol. 2011;85:8413–21. https://doi.org/10.1128/JVI.00219-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galloway SE, Reed ML, Russell CJ and Steinhauer DA (2013) Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS pathogens 9.

  18. Ginalski K, Grishin NV, Godzik A, Rychlewski L. Practical lessons from protein structure prediction. Nucl Acids Res. 2005;33:1874–91. https://doi.org/10.1093/nar/gki327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the “internal” genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999;96:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;267:279–88. https://doi.org/10.1006/viro.1999.0115.

    Article  CAS  PubMed  Google Scholar 

  21. Haghighat-Jahromi M, Asasi K, Nili H, Dadras H, Shooshtari AH. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine. Arch Virol. 2008;153:651–5. https://doi.org/10.1007/s00705-008-0033-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  23. Hassan KE, Shany SA, Ali A, Dahshan AH, El-Sawah AA, El-Kady MF. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult Sci. 2016;95:1271–80. https://doi.org/10.3382/ps/pew068.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan KE, Ali A, Shany SAS, El-Kady MF. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens. Res Vet Sci. 2017;115:356–62. https://doi.org/10.1016/j.rvsc.2017.06.024.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Henikoff S, Henikoff JG, Pietrokovski S. Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics. 1999;15:471–9. https://doi.org/10.1093/bioinformatics/15.6.471.

    Article  CAS  PubMed  Google Scholar 

  26. Henikoff JG, Greene EA, Pietrokovski S, Henikoff S. Increased coverage of protein families with the blocks database servers. Nucl Acids Res. 2000;28:228–30. https://doi.org/10.1093/nar/28.1.228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:2275–89.

    Article  CAS  PubMed  Google Scholar 

  28. Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature. 1996;381:272. https://doi.org/10.1038/381272a0.

    Article  CAS  PubMed  Google Scholar 

  29. Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337:199–204. https://doi.org/10.1126/science.1222213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kahn D, Rezvoy C and Vivien F (2008) Parallel large scale inference of protein domain families. . the 14th International Conference on Parallel and Distributed Systems, Melbourne, Australia, IEEE, . pp. 72–79

  31. Kandeil A, El-Shesheny R, Maatouq AM, Moatasim Y, Shehata MM, Bagato O, Rubrum A, Shanmuganatham K, Webby RJ, Ali MA, Kayali G. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Arch Virol. 2014;159:2861–76. https://doi.org/10.1007/s00705-014-2118-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. https://doi.org/10.1038/nprot.2015.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kishida N, Sakoda Y, Eto M, Sunaga Y, Kida H. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch Virol. 2004;149:2095–104. https://doi.org/10.1007/s00705-004-0372-1.

    Article  CAS  PubMed  Google Scholar 

  34. Klepeis JL, Wei Y, Hecht MH, Floudas CA. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Proteins. 2005;58:560–70. https://doi.org/10.1002/prot.20338.

    Article  CAS  PubMed  Google Scholar 

  35. Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucl Acids Res. 2012;40:W294–7. https://doi.org/10.1093/nar/gks493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laskowski RA, Moss DS, Thornton JM. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993;231:1049–67. https://doi.org/10.1006/jmbi.1993.1351.

    Article  CAS  PubMed  Google Scholar 

  37. Lazaridis T, Karplus M. Effective energy functions for protein structure prediction. Curr Opin Struct Biol. 2000;10:139–45. https://doi.org/10.1016/s0959-440x(00)00063-4.

    Article  CAS  PubMed  Google Scholar 

  38. Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucl Acids Res. 2015;43:D257–60. https://doi.org/10.1093/nar/gku949.

    Article  CAS  PubMed  Google Scholar 

  39. Li OT, Barr I, Leung CY, Chen H, Guan Y, Peiris JS, Poon LL. Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. J Virol Methods. 2007;142:218–22. https://doi.org/10.1016/j.jviromet.2007.01.015.

    Article  CAS  PubMed  Google Scholar 

  40. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Ann Rev Biophys Biomol Struct. 2000;29:291–325.

    Article  Google Scholar 

  41. Nili H, Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol. 2002;31:247–52. https://doi.org/10.1080/03079450220136567.

    Article  PubMed  Google Scholar 

  42. Ning Y, Ye J, Wen J, Wu D, Chen Z, Lin Y, Hu B, Luo M, Luo J, Ning L. Identification of two Lpp20 CD4+ T cell epitopes in Helicobacter pylori-infected subjects. Front Microbiol. 2018;9:884.

    Article  PubMed  PubMed Central  Google Scholar 

  43. OIE terrestrial manual (2018): OIE Manual of Diagnostic tests and vaccines for terrestrial animals 2018. Chapter, 3.3.4. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf

  44. Pazani J, Marandi MV, Ashrafihelan J, Marjanmehr SH, Ghods F. Pathological studies of A/Chicken/Tehran/ZMT-173/99 (H9N2) influenza virus in commercial broiler chickens of Iran. Int J Poult Sci. 2008;7:502–10.

    Article  Google Scholar 

  45. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I. New and continuing developments at PROSITE. Nucl Acids Res. 2013;41:D344–7. https://doi.org/10.1093/nar/gks1067.

    Article  CAS  PubMed  Google Scholar 

  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. https://doi.org/10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wallner B, Elofsson A. Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics. 2005;21:4248–54. https://doi.org/10.1093/bioinformatics/bti702.

    Article  CAS  PubMed  Google Scholar 

  48. Wan J, Kang S, Tang C, Yan J, Ren Y, Liu J, Gao X, Banerjee A, Ellis LB, Li T. Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucl Acids Res. 2008;36:e22. https://doi.org/10.1093/nar/gkm848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucl Acids Res. 2007;35:3375–82. https://doi.org/10.1093/nar/gkm251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu S, Zhang Y. A comprehensive assessment of sequence-based and template-based methods for protein contact prediction. Bioinformatics. 2008;24:924–31. https://doi.org/10.1093/bioinformatics/btn069.

    Article  CAS  PubMed  Google Scholar 

  51. Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci. 2006;7:217–27. https://doi.org/10.2174/138920306777452312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins. 2012;80:1715–35. https://doi.org/10.1002/prot.24065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12:7–8. https://doi.org/10.1038/nmeth.3213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins. 2004;57:702–10. https://doi.org/10.1002/prot.20264.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Kunitoshi Imai for the supervision of the wok and his technical support. We are also grateful for Prof. Dr.Haruko Ogawa, Dr.Vuong Nghia Bui, Dr. Dai Quang Trinh, Sachiko Mastuda (Obihiro University of Agriculture and Veterinary Medicine) and Dr. Serageldeen Sultan (South Vally University) for their technical support.

Funding

Mohammed AboElkhair was supported by the Ministry of Higher Education and Scientific Research, Egypt during his stay in Obihiro University of Agriculture and Veterinary Medicine, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. AboElkhair.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human Participants And/Or Animals

This article does not contain any studies with animals done by any of the authors.

Informed consent

All authors have read the manuscript and approve submission to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AboElkhair, M.A., Hasan, M.E., Mousa, A. et al. In-silico evidence for enhancement of avian influenza virus H9N2 virulence by modulation of its hemagglutinin (HA) antigen function and stability during co-infection with infectious bronchitis virus in chickens. VirusDis. 32, 548–558 (2021). https://doi.org/10.1007/s13337-021-00688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-021-00688-1

Keywords

Navigation