Skip to main content
Log in

First detection of orchid fleck virus in orchids in Mexico

  • Short Communication
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

For the first time, an isolate of the dichorhavirus orchid fleck virus (OFV, family Rhabdoviridae) was found infecting an orchid plant in Mexico. The infected sample of Epidendrum veroscriptum was collected in a nursery in Lagunillas, municipality of Zihuateutla, Edo. Puebla. Mites gathered on this plant were analyzed by light and scanning electron microscopy, which consistently indicated the presence of adults of the species Brevipalpus californicus, the common vector of OFV. Viral identification was based on symptoms, cytopathology, and reverse transcriptase-PCR/sequencing of genome fragments of the RNA1 and 2 molecules. Since isolates of OFV causing citrus leprosis have been previously detected in the Mexican states of Chiapas, Querétaro, and Jalisco, we promote a pertinent discussion and thought-provoking questions regarding the epidemiology and putative evolution of OFV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

Nucleotide sequences of fragments corresponding to the N and L genes of OFV_Mex1 obtained in this study were deposited in the GenBank accessions MT497517and MT497518, respectively.

References

  1. Kondo H, Maeda T, Tamada T. Orchid fleck virus: Brevipalpus californicus mite transmission, biological properties and genome structure. Exp Appl Acarol. 2003;30:215–23.

    Google Scholar 

  2. Doi Y, Arai K, Yora K. Distribution of bacilliform virus particles in Masaki mosaic disease and Cymbidium ringspot disease. Ann Phytopathol Soc Jpn. 1969;35:388.

    Google Scholar 

  3. Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astúa J, Goodin MM, Kitajima EW, et al. Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol. 2014;159:607–19.

    Google Scholar 

  4. Dietzgen RG, Freitas-Astúa J, Chabi-Jesus C, Ramos-González PL, Goodin MM, Kondo H, et al. Dichorhaviruses in their host plants and mite vectors. Adv Virus Res. 2018;119–48.

  5. Inouye N, Matsumoto J, Maeda T, Mitsuhata K, Kondo H, Tahara M. Orchid fleck virus, the causal agent of a yellowish fleck mosaic disease of Calanthe. Bull Res Inst Bioresour - Okayama Univ. Ōhara Institut für Landwirtschaftliche Biologie, Okayama Universität; 1996;4:119–35.

  6. Blanchfield AL, Mackenzie AM, Gibbs A, Kondo H, Tamada T, Wilson CR. Identification of orchid fleck virus by reverse transcriptase-polymerase chain reaction and analysis of isolate relationships. J Phytopathol. 2001;149:713–8.

    Google Scholar 

  7. Kubo KS, Stuart RM, Freitas-Astúa J, Antonioli-Luizon R, Locali-Fabris EC, Coletta-Filho HD, et al. Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol. 2009;154:1009–14.

    Google Scholar 

  8. Kim S-R, Yoon J-Y, Choi G-S, Chang M-U, Choi J-K, Chung B-N. Molecular characterization and survey of the infection rate of Orchid fleck virus in commercial orchids. Plant Pathol J. 2010;26:130–8.

    Google Scholar 

  9. Ramos-González PL, Sarubbi-Orue H, Gonzales-Segnana L, Chabi-Jesus C, Freitas-Astúa J, Kitajima EW. Orchid fleck virus infecting orchids in Paraguay: first report and use of degenerate primers for its detection. J Phytopathol. 2016;164:342–7.

    Google Scholar 

  10. Sauvêtre P, Veniant E, Croq G, Tassi AD, Kitajima EW, Chabi-Jesus C, et al. First report of orchid fleck virus in the orchid collection of jardin du Luxembourg, Paris. France Plant Dis. 2018;102:2670.

    Google Scholar 

  11. Mei Y, Bejerman N, Crew KS, McCaffrey N, Dietzgen RG. First report of orchid fleck virus in lilyturf (Liriope spicata) in Australia. Plant Dis. 2016;100:1028.

    Google Scholar 

  12. Dietzgen RG, Tassi AD, Freitas-Astúa J, Kitajima EW. First report of orchid fleck virus and its mite vector on green cordyline. Australas Plant Dis Notes. 2018;13:1–4.

    Google Scholar 

  13. Read DA, Roberts R, Thompson GD. Orchid fleck virus and a novel strain of sweet potato chlorotic stunt virus associated with an ornamental cultivar of Alcea rosea L. in South Africa. Eur J Plant Pathol. 2021;159:1–6.

    Google Scholar 

  14. Roy A, Leon MG, Stone AL, Schneider WL, Hartung J, Brlansky RH. First report of citrus leprosis virus nuclear type in sweet orange in Colombia. Plant Dis. 2014;98:1162.

    Google Scholar 

  15. Roy A, Stone AL, Shao J, Otero-Colina G, Wei G, Choudhary N, et al. Identification and molecular characterization of nuclear citrus leprosis virus, a member of the proposed Dichorhavirus genus infecting multiple citrus species in Mexico. Phytopathology. 2015;105:564–75.

    Google Scholar 

  16. Cook G, Kirkman W, Clase R, Steyn C, Basson E, Fourie PH, et al. Orchid fleck virus associated with the first case of citrus leprosis-N in South Africa. Eur J Plant Pathol. 2019;155:1373–9.

  17. García-Escamilla P, Duran-Trujillo Y, Otero-Colina G, Valdovinos-Ponce G, Santillán-Galicia MT, Ortiz-García CF, et al. Transmission of viruses associated with cytoplasmic and nuclear leprosis symptoms by Brevipalpus yothersi and B. californicus. Trop Plant Pathol. 2018;43:69–77.

    Google Scholar 

  18. Roy A, Hartung JS, Schneider WL, Shao J, Leon MG, Melzer MJ, et al. Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology. 2015;105:872–84.

    Google Scholar 

  19. Ramos-González PL, Chabi-Jesus C, Arena GD, Tassi AD, Kitajima EW, Freitas-Astúa J. Citrus leprosis: a unique multietiologic disease. Citrus Am. 2018;1:4–19.

    Google Scholar 

  20. Anonymous. FAOSTAT [Internet]. Available from: http://www.fao.org/faostat/en/#data/QC [Cited 2020 Aug 2].

  21. Bassanezi RB, Czermainski ABC, Laranjeira FF, Moreira AS, Ribeiro PJ, Krainski ET, et al. Spatial patterns of the Citrus leprosis virus and its associated mite vector in systems without intervention. Plant Pathol. 2019;68:85–93.

    Google Scholar 

  22. Levy A, Batuman O, Sieburth P, Diepenbrock L. Citrus Leprosis poses a threat to Florida [Internet]. Citrus Ind. Mag. 2020 [cited 2021 Mar 9]. Available from: http://citrusindustry.net/2020/02/17/citrus-leprosis-poses-a-threat-to-florida/

  23. Freitas-Astúa J, Ramos-González PL, Arena GD, Tassi AD, Kitajima EW. Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Curr Opin Virol. 2018;33:66–73.

    Google Scholar 

  24. Cruz-Jaramillo JL, Ruiz-Medrano R, Rojas-Morales L, López-Buenfil JA, Morales-Galván O, Chavarín-Palacio C, et al. Characterization of a proposed dichorhavirus associated with the citrus leprosis disease and analysis of the host response. Viruses. 2014;6:2602–22.

    Google Scholar 

  25. Arena GD, Ramos-González PL, Falk BW, Casteel CL, Freitas-Astúa J, Machado MA. Plant immune system activation upon citrus leprosis virus C infection is mimicked by the ectopic expression of the P61 viral protein. Front Plant Sci. 2020;11:1188.

    Google Scholar 

  26. Arena GD, Ramos-González PL, Nunes MA, Alves MR, Camargo LEA, Kitajima EW, et al. Citrus leprosis virus C infection results in hypersensitive-like response, suppression of the JA/ET plant defense pathway and promotion of the colonization of its mite vector. Front Plant Sci Front. 2016;7:1757.

    Google Scholar 

  27. Chabi-Jesus C, Ramos-González PL, Tassi AD, Guerra-Peraza O, Kitajima EW, Harakava R, et al. Identification and characterization of citrus chlorotic spot virus, a new dichorhavirus associated with citrus leprosis-like symptoms. Plant Dis. 2018;102:1588–98.

    Google Scholar 

  28. Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Tassi AD, Kitajima EW, Harakava R, et al. Citrus leprosis virus N: a new dichorhavirus causing Citrus Leprosis disease. Phytopathology. 2017;107:963–76.

    Google Scholar 

  29. Beard J, Ochoa R, Bauchan G, Trice T, Redford A, Walters T, et al. Flat mites of the world. 2nd ed. Fort Collins, CO: Identification Technology Program, CPHST, PPQ, APHIS, USDA; 2013.

  30. Baker E, Tuttle D. The false spider mites of Mexico (Tenuipalpidae: Acari). US Dep Agric Tech Bull. 1987;1706:1–237.

    Google Scholar 

  31. Kitajima EW, Nome CF. Microscopia electrónica em virologia vegetal. In: Docampo DM, Lenardón SL, editors. Métodos para Detect patógenos sistémicos. IFFIVE/INT. Córdoba; 1999;59–87.

  32. Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Breton MC, Arena GD, Nunes MA, et al. Phylogenetic and molecular variability studies reveal a new genetic clade of Citrus leprosis virus C. Viruses. 2016;8:153.

    Google Scholar 

  33. Kondo H, Hirota K, Maruyama K, Andika IB, Suzuki N. A possible occurrence of genome reassortment among bipartite rhabdoviruses. Virology. 2017;508:18–25.

    Google Scholar 

  34. Roy A, Stone AL, Otero-Colina G, Wei G, Brlansky RH, Ochoa R, et al. Reassortment of genome segments creates stable lineages among strains of orchid fleck virus infecting citrus in Mexico. Phytopathology. 2020;110:106–20.

    Google Scholar 

  35. Castillo-Pérez LJ, Martínez-Soto D, Maldonado-Miranda JJ, Alonso-Castro AJ, Carranza-Álvarez C. The endemic orchids of Mexico: a review. Biol (Br). 2019;74:1–13.

    Google Scholar 

  36. Hágsater E, Calaway H, Sánchez L, Carnevali G, García-Cruz J, Dressler R, et al. Icones Orchidacearum 2: The genus Epidendrum, part 1. In: Hágsater E, Salazar G, editors. Mexico City: Instituto Chinoin, A.C; 1993.

  37. Donadio L, Mourao-Filho F, Moreira C. Centros de origem, distribuição geoográfica das plantas cítricas e histórico da citricultura no Brasil. In: Mattos D, De Negri JD, Pio R, Pompeu Junior J, editors. Citros. Campinas: Fundag and Instituto Agronomico; 2005. p. 1–18.

    Google Scholar 

  38. Hartung JS, Roy A, Fu S, Shao J, Schneider WL, Brlansky RH. History and diversity of citrus leprosis virus recorded in herbarium specimens. Phytopathology. 2015;105:1277–84.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Vincenzo Bertolini, El Colegio de la Frontera Sur, México, for the identification of the orchid plant.

Funding

This research was funded by Fundação de Apoio à Pesquisa do Estado de São Paulo- FAPESP, grants 2014/08458-9 and 2017/50222-0. CCJ and ADT have scholarships from FAPESP, respectively 2016/01960-6 and 2018/12252-8. In addition, the study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior- Brasil (CAPES) (001. PNPD20132154-33141010001P4-PNPD-IBSP).

Author information

Authors and Affiliations

Authors

Contributions

PLRG and EWK conceptualized and wrote the original draft; GOC, PLRG, CCJ, ADT, and EWK worked on the formal analysis; PLRG, JFA, and EWK supervised the study; JFA and EWK were responsible for funding acquisition. PLRG, CCJ, ADT, and EWK worked on the investigation and methodology. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Pedro Luis Ramos-González or Elliot W. Kitajima.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero-Colina, G., Ramos-González, P.L., Chabi-Jesus, C. et al. First detection of orchid fleck virus in orchids in Mexico. VirusDis. 32, 167–172 (2021). https://doi.org/10.1007/s13337-021-00676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-021-00676-5

Keywords

Navigation