Skip to main content

Advertisement

Log in

Genetic diversity and evolutionary dynamics of dengue isolates from India

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Dengue virus (DENV) is the mosquito borne virus which causes Dengue Haemorrhagic Fever and Dengue Shock Syndrome. It consists of four distinct serotypes (DENV 1–4). DENV 1, 3 and 4 were classified into five genotypes (GI–GV), where as DENV-2 belongs to American and Cosmopolitan genotypes. Dengue virus is most prevalent in south and Southeast Asia including India. This study was initiated to study the genetic diversity and evolution among the Dengue isolates in India. Pairwise comparison of amino acid sequences among the serotypes has shown that DENV-3 is having less sequence diversity compared to other serotypes having differences in their amino acid numbers. We have analyzed the 50 Indian strains and 19 of those strains have been identified as recombinant strains by using RDP4 package, which are then excluded for future selection. Episodic positive selection of DENV was obtained using MEME with P value is ≤ 5. Positive selection on several codons was used to correlate the genetic diversity between serotypes. This study clearly established that diversity of amino acids and inter genotypic recombination of strains are the major cause for antigenicity variation and evolution of DENV within India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen R, Vasilakis N. Dengue—Quo tu et quo vadis. Viruses. 2011;3:1562–608.

    Article  Google Scholar 

  2. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239:476–81.

    Article  CAS  Google Scholar 

  3. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11:480–96.

    Article  CAS  Google Scholar 

  4. Waman PV, Mohan MK, Urmila KK. Genetic diversity and evolution of dengue virus serotype 3: a comparative genomics study. Elsevier. 2017;49:234–40.

    CAS  Google Scholar 

  5. Amarilla AA, et al. Genetic diversity of the E protein of dengue type 3 virus. Virol J. 2009;6:113. https://doi.org/10.1186/1743-422X-6-113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ram S, Khurana S, Kaushal V, Gupta R, Khurana SB. Incidence of dengue fever in relation to climatic factors in Ludhiana, Punjab. Indian J Med Res. 1998;108:128–33.

    CAS  PubMed  Google Scholar 

  7. Singh UB, Maitra A, Broor S, Rai A, Pasha ST, Seth P. Partial nucleotide sequencing and molecular evolution of epidemic causing dengue 2 strains. J Infect Dis. 1999;180:959–65.

    Article  CAS  Google Scholar 

  8. Dash PK, Parida MM, Saxena P, Kumar M, Rai A, Pasha ST, Jana AM. Emergence and continued circulation of dengue-2 (genotype IV) virus strains in northern India. J Med Virol. 2004;74:314–22.

    Article  CAS  Google Scholar 

  9. Kukreti H, Chaudhary A, Rautela RS, Anand R, Mittal V, Chhabra M, Bhat-tacharya D, Lal S, Rai A. Emergence of an independent lineage ofdengue virus type 1 (DENV-1) and its co-circulation with predominant DENV-3 during the 2006 dengue fever outbreak in Delhi. Int J Infect Dis. 2008;12:542–9.

    Article  CAS  Google Scholar 

  10. Amarilla AA, de Almeida FT, Jorge DM, Alfonso HL, de Castro-Jorge LA, Nogueira NA, Figueiredo LT, Aquino VH. Genetic diversity of the E protein of dengue type 3 virus. Virol J. 2009;6:113. https://doi.org/10.1186/1743-422x-6-113.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Annette A, Bennet A, Ajay PJ, Rajendra KB, Suman R, Vinod J. First study of complete genome of Dengue-3 virus from Rajasthan, India: genomic characterization, amino acid variations and phylogenetic analysis. Virol Rep. 2016;6:32–40.

    Article  Google Scholar 

  12. Benson DA, et al. GenBank. Nucleic Acids Res. 2013;41(Database issue):D36–42.

    CAS  PubMed  Google Scholar 

  13. Kolekar P, Kale M, Kulkarni-Kale U. Alignment-free distance measure based on return time distribution for sequence analysis: applications to clustering, molecular phylogeny and subtyping. Mol Phylogenet Evol. 2012;65:510–22.

    Article  Google Scholar 

  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004;32:1792–7.

    Article  CAS  Google Scholar 

  15. Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007;176:1035–47.

    Article  CAS  Google Scholar 

  16. Martin D, Posada D, Crandall K, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir. 2005;21:98–102.

    Article  CAS  Google Scholar 

  17. Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci. 2001;98:13757–62.

    Article  CAS  Google Scholar 

  18. Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16:573–82.

    Article  CAS  Google Scholar 

  19. Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.

    Article  CAS  Google Scholar 

  20. Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.

    CAS  PubMed  Google Scholar 

  21. Delport W, Poon AFY, Frost SDW, Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26(19):2455–7.

    Article  CAS  Google Scholar 

  22. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8:e1002764. https://doi.org/10.1371/journal.pgen.1002764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brooks AJ, Johansson M, John AV, Xu Y, Jans DA, Vasudevan SG. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem. 2002;277:36399–407.

    Article  Google Scholar 

  24. Dash PK, Sharma S, Soni M, Agarwal A, Parida M, Rao PVL. Complete genome sequencing and evolutionary analysis of Indian isolates of dengue 2virus. Biochem Biophys Res Commun. 2013;436:478–85.

    Article  CAS  Google Scholar 

  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  CAS  Google Scholar 

  26. Holmes E, Twiddy S. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol. 2003;3:19–28.

    Article  Google Scholar 

  27. Kurane I. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis. 2007;30:329–40.

    Article  Google Scholar 

  28. Matsui K, et al. Characterization of dengue complex-reactive epitopes on dengue 3 virus envelope protein domain III. Virology. 2009;384(1):16–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayavel Sridhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rexliene, J., Sridhar, J. Genetic diversity and evolutionary dynamics of dengue isolates from India. VirusDis. 30, 354–359 (2019). https://doi.org/10.1007/s13337-019-00538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-019-00538-1

Keywords

Navigation