, Volume 30, Issue 1, pp 43–57 | Cite as

Diversity of single-stranded DNA containing viruses in shrimp

  • Arun K. DharEmail author
  • Roberto Cruz-Flores
  • Luis Fernando Aranguren Caro
  • Halina M. Siewiora
  • Darryl Jory
Review Article


Over the past four decades, shrimp aquaculture has turned into a major industry providing jobs for millions of people worldwide especially in countries with large coastal boundaries. While the shrimp industry continues to expand, the sustainability of shrimp aquaculture has been threatened by the emergence of diseases. Diseases caused by single-stranded DNA containing viruses, such as infectious hypodermal and hematopoietic necrosis virus (IHHNV) and hepatopancreatic parvovirus (HPV), have caused immense losses in shrimp aquaculture since the early 1980s. In fact, the disease outbreak in the blue shrimp (Penaeus stylirostris) caused by IHHNV in early 1980s ultimately led to the captive breeding program in shrimp being shifted from P. stylirostris to the white shrimp (Penaeus vannamei), and today P. vannamei is the preferred cultured shrimp species globally. To date, four single-stranded DNA viruses are known to affect shrimp; these include IHHNV, HPV, spawner-isolated mortality virus (SMV) and lymphoidal parvo-like virus (LPV). Due to the economic losses caused by IHHNV and HPV, most studies have focused on these two viruses, and only IHHNV is included in the OIE list of Crustacean Diseases. Hence this review will focus on IHHNV and HPV. IHHNV and HPV virions are icosahedral in morphology measuring 20–22 nm in size and contain a single-stranded DNA (ssDNA) of 4–6 kb in size. Both IHHNV and HPV are classified into the sub-order Brevidensoviruses, family Densovirinae. The genome architecture of both viruses are quite similar as they contain two completely (as in IHHNV) or partially overlapping (as in HPV) non-structural and one structural gene. Histopathology and polymerase chain reaction (PCR)-based methods are available for both viruses. Currently, there is no anti-viral therapy for any viral diseases in shrimp. Therefore, biosecurity and the use of genetically resistant lines remains as the corner stone in the management of viral diseases. In recent years, gene silencing using the RNA interference (RNAi) approach has been reported for both IHHNV and HPV via injection. However, the delivery of RNAi molecules via oral route remains a challenge, and the utility of RNAi-based therapy has yet to be materialized in shrimp aquaculture.


Single-stranded DNA viruses Parvovirus Shrimp Infectious hypodermal and hematopoietic necrosis virus Penaeus stylirostris densovirus Hepatopancreatic parvovirus Penaeus monodon densovirus Spawner-isolated mortality virus Lymphoidal parvo-like virus IHHNV PstDNV HPV PmDNV SMV LPV 



Partial  funding for this work was provided by College of Agricultural and Life Sciences to Arun K Dhar.


  1. 1.
    Alday-Sanz V. The shrimp book. 1st ed. Alday-Sanz V, editor. Nottingham: Nottingham University Press; 2010.Google Scholar
  2. 2.
    Anderson BJL, Valderrama D, Jory DE. Global shrimp production review and forecast: steady growth ahead [Internet]. Glob. Aquac. Alliance. 2018 [cited 2019 Feb 25]. pp. 5–10.
  3. 3.
    Aranguren LF, Tang KFJ, Lightner DV. Quantification of the bacterial agent of necrotizing hepatopancreatitis (NHP-B) by real-time PCR and comparison of survival and NHP load of two shrimp populations. Aquaculture. 2010;307:187–92.CrossRefGoogle Scholar
  4. 4.
    Attasart P, Kaewkhaw R, Chimwai C, Kongphom U, Panyim S. Clearance of Penaeus monodon densovirus in naturally pre-infected shrimp by combined ns1 and vp dsRNAs. Virus Res. 2011;159:79–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Attasart P, Namramoon O, Kongphom U, Chimwai C, Panyim S. Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp. Virus Res. 2013;171:252–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Bell TA, Lightner DV. IHHN virus: infectivity and pathogenicity studies in Penaeus stylirostris and Penaeus vannamei. Aquaculture. 1984;38:185–94.CrossRefGoogle Scholar
  7. 7.
    Bell TA, Lightner DV, Brock JA. A biopsy procedure for the nondestructive determination of infectious hypodermal and hematopoietic necrosis virus (IHHNV) infection in Penaeus vannamei. J Aquat Anim Health. 1990;2:151–3.CrossRefGoogle Scholar
  8. 8.
    Bonami J-R, Trumper B, Mari J, Brehelin M, Lightner DV. Purification and characterization of the infectious hypodermal and haematopoietic necrosis virus of penaeid shrimps. J Gen Virol. 1990;71:2657–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Bonami JR, Mari J, Poulos BT, Lightner DV. Characterization of hepatopancreatic parvo-like virus, a second unusual parvovirus pathogenic for penaeid shrimps. J Gen Virol. 1995;76:813–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Browdy CL, Jory DE. The Rising Tide, Proceedings of the Special Session on Sustainable Shrimp Farming. World Aquac 2009. Lousiana, USA; 2009.Google Scholar
  11. 11.
    Carr WH, Sweeney JN, Nunan L, Lightner DV, Hirsch HH, Reddington JJ. The use of an infectious hypodermal and hematopoietic necrosis virus gene probe serodiagnostic field kit for the screening of candidate specific pathogen-free Penaeus vannamei broodstock. Aquaculture. 1996;147:1–8.CrossRefGoogle Scholar
  12. 12.
    Catap ES, Lavilla-Pitogo CR, Maeno Y, Traviña RD. Occurrence, histopathology and experimental transmission of hepatopancreatic parvovirus infection in Penaeus monodon postlarvae. Dis Aquat Organ. 2003;57:11–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen B, Dong Z, Pang N, Nian Y, Yan D. A novel real-time PCR approach for detection of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in the freshwater crayfish Procambarus clarkii. J Invertebr Pathol. 2018;157:100-1003.Google Scholar
  14. 14.
    Chong Y, Loh P. Hepatopancreas chlamydial and parvovirus infections of farmed marine prawns in Singapore. Singapore Vet J. 1984;51–6.Google Scholar
  15. 15.
    Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, et al. The family Parvoviridae. Arch Virol. 2014;159:1239–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Cowley JA, Rao M, Coman GJ, Cowley J. Real-time PCR tests to specifically detect infectious hypodermal and haemopoietic necrosis virus (IHHNV) lineages and an IHHNV endogenous viral element (EVE) integrated in the genome of black tiger shrimp (Penaeus monodon). 2018;129:145–58.Google Scholar
  17. 17.
    Dhar AK, Robles-Sikisaka R, Saksmerprome V, Lakshman DK. Biology, Genome Organization, and Evolution of Parvoviruses in Marine Shrimp. Adv Virus Res. 1st ed. Elsevier Inc.; 2014. p. 85–139.Google Scholar
  18. 18.
    Dhar AK, Roux MM, Klimpel KR. Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR green chemistry. J Clin Microbiol. 2001;39:2835–45.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dhar AK, Lakshman DK, Natarajan S, Allnutt FCT, van Beek NAM. Functional characterization of putative promoter elements from infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp and in insect and fish cell lines. Virus Res. 2007;127:1–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Dhar AK, Kaizer KN, Lakshman DK. Transcriptional analysis of Penaeus stylirostris densovirus genes. Virology. 2010;402:112–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Escobedo-Bonilla CM, Rangel JLI. Susceptibility to an inoculum of infectious hypodermal and haematopoietic necrosis virus (IHHNV) in three batches of whiteleg shrimp Litopenaeus vannamei (Boone, 1931). Zookeys. 2014;365:355–65.CrossRefGoogle Scholar
  22. 22.
    Flegel TW. Special topic review: major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J Microbiol Biotechnol. 1997;13:433–42.CrossRefGoogle Scholar
  23. 23.
    Flegel TW. Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture. 2006;258:1–33.CrossRefGoogle Scholar
  24. 24.
    Flegel TW. Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biol Direct. 2009;4:32.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Flegel TW, Nielsen L, Thamavit V, Kongtim S, Pasharawipas T. Presence of multiple viruses in non-diseased, cultivated shrimp at harvest. Aquaculture. 2004;240:55–68.CrossRefGoogle Scholar
  26. 26.
    Ho T, Yasri P, Panyim S, Udomkit A. Double-stranded RNA confers both preventive and therapeutic effects against Penaeus stylirostris densovirus (PstDNV) in Litopenaeus vannamei. Virus Res. 2011;155:131–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Itsathitphaisarn O, Thitamadee S, Weerachatyanukul W, Sritunyalucksana K. Potential of RNAi applications to control viral diseases of farmed shrimp. J Invertebr Pathol. 2017;147:76–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Jang IK, Jeeva S, Seo HC, Lee Y-S, Choi T-J, Kang S-W. Complete nucleotide sequence analysis of a Korean strain of hepatopancreatic parvovirus (HPV) from Fenneropenaeus chinensis. Virus Genes. 2011;44:89–97.PubMedGoogle Scholar
  29. 29.
    Kalagayan H, Godin D, Kanna R, Hagino G, Sweeney J, Wyban J, et al. IHHN virus as an etiological factor in runt-deformity syndrome (RDS) of Juvenile Penaeus vannamei cultured in Hawaii. J World Aquac Soc. 1991;22:235–43.CrossRefGoogle Scholar
  30. 30.
    Kaufmann B, Bowman VD, Li Y, Szelei J, Waddell PJ, Tijssen P, et al. Structure of Penaeus stylirostris densovirus, a shrimp pathogen. J Virol. 2010;84:11289–96.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kelly DC, Elliott RM. DNA contained by two densonucleosis viruses. JVirol. 1977;21:408–10.Google Scholar
  33. 33.
    Khawsak P, Deesukon W, Chaivisuthangkura P, Sukhumsirichart W. Multiplex RT-PCR assay for simultaneous detection of six viruses of penaeid shrimp. Mol Cell Probes. 2008;22:177–83.CrossRefPubMedGoogle Scholar
  34. 34.
    Kiatmetha P, Santimanawong W, Chotwiwatthanakun C, Jariyapong P, Ounjai P, Weerachatyanukul W. Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ. 2018;6:e6079.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim JH, Choresca CH Jr, Shin SP, Han JE, Jun JW, Han SY, et al. Detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in Litopenaeus vannamei shrimp cultured in South Korea. Aquaculture. 2011;313:161–4.CrossRefGoogle Scholar
  36. 36.
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7. 0 for Bigger Datasets. Mol B. 2018;33:1870–4.Google Scholar
  37. 37.
    La Fauce KA, Owens L. The use of insects as a bioassay for Penaeus merguiensis densovirus (PmergDNV). J Invertebr Pathol. 2008;98:1–6.CrossRefPubMedGoogle Scholar
  38. 38.
    La Fauce KA, Elliman J, Owens L. Molecular characterisation of hepatopancreatic parvovirus (PmergDNV) from Australian Penaeus merguiensis. Virology. 2007;362:397–403.CrossRefPubMedGoogle Scholar
  39. 39.
    Lightner DV. Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Rev Sci Tech l’OIE. 1996;15:579–601.CrossRefGoogle Scholar
  40. 40.
    Lightner DV. Biosecurity in shrimp farming : pathogen exclusion through use of SPF stock and routine surveillance. J World Aquac Soc. 2005;36:230–48.Google Scholar
  41. 41.
    Lightner DV, Redman RM. A parvo-like virus disease of penaeid shrimp. J Invertebr Pathol. 1985;45:47–53.CrossRefGoogle Scholar
  42. 42.
    Lightner DV, Redman RM. Penaeid virus diseases of the shrimp culture industry of the Americas. In: Fast A, Lester L, editors. Mar shrimp cult princ pract. Amsterdam: Elsevier; 1992. p. 569–88.CrossRefGoogle Scholar
  43. 43.
    Lightner DV, Redman RM. Shrimp diseases and current diagnostic methods. Aquaculture. 1998;164:201–20.CrossRefGoogle Scholar
  44. 44.
    Lightner DV, Redman RM, Bell T, Brock J. Detection of IHHN virus in Penaeys stylirostris and P. vannamei imported into Hawaii. J World Maric Soc. 1983;225:212–25.Google Scholar
  45. 45.
    Mari J, Bonami JR, Lightner DV. Partial cloning of the genome of infectious hypodermal and haematopoietic necrosis virus, an unusual parvovirus pathogenic for penaeid shrimps; diagnosis of the disease using a specific probe. J Gen Virol. 1993;74:2637–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Motte E, Yugcha E, Luzardo J, Castro F, Leclercq G, RodrÍguez J, et al. Prevention of IHHNV vertical transmission in the white shrimp Litopenaeus vannamei. Aquaculture. 2003;219:57–70.CrossRefGoogle Scholar
  47. 47.
    Ongvarrasopone C, Saejia P, Chanasakulniyom M, Panyim S. Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the LvRab7 gene using double-stranded RNA. Arch Virol. 2011;156:1117–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Owens L, De Beer S, Smith J. Lymphoidal parvovirus-like particles in Australian penaeid prawns. Dis Aquat Organ. 1991;11:129–34.CrossRefGoogle Scholar
  49. 49.
    Owens L, Haqshenas G, McElnea C, Coelen R. Putative spawner-isolated mortality virus associated with mid-crop mortality syndrome in farmedPenaeus monodon from northern Australia. Dis Aquat Organ. 1998;34:177–85.CrossRefPubMedGoogle Scholar
  50. 50.
    Pantoja CR, Lightner DV. A non-destructive method based on the polymerase chain reaction for detection of hepatopancreatic parvovirus (HPV) of penaeid shrimp. 2000;39:177–82.Google Scholar
  51. 51.
    Phromjai J, Boonsaeng V, Withyachumnarnkul B, Flegel TW. Detection of hepatopancreatic parvovirus in Thai shrimp Penaeus monodon by in situ hybridization, dot blot hybridization and PCR amplification. Dis Aquat Organ. 2002;51:227–32.CrossRefPubMedGoogle Scholar
  52. 52.
    Rao M, Cowley JA, Murphy BS, Stratford CN, Sellars MJ. Double-stranded RNA injected into female black tiger shrimp (Penaeus monodon) prior to spawning does not transfer to progeny. Aquaculture. 2019;500:126–34.CrossRefGoogle Scholar
  53. 53.
    Robles-Sikisaka R, Bohonak AJ, McClenaghan LR, Dhar AK. Genetic signature of rapid IHHNV (infectious hypodermal and hematopoietic necrosis virus) expansion in wild penaeus shrimp populations. PLoS One. 2010;5:e11799.Google Scholar
  54. 54.
    Safeena MP, Rai P. Molecular biology and epidemiology of hepatopancreatic parvovirus of penaeid shrimp. Indian J Virol. 2012;23:191–202.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Saksmerprome V, Charoonnart P, Gangnonngiw W, Withyachumnarnkul B. A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. J Virol Methods. 2009;162:213–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Sellars MJ, Cowley JA, Musson D, Rao M, Menzies ML, Coman GJ, et al. Reduced growth performance of black tiger shrimp (Penaeus monodon) infected with infectious hypodermal and hematopoietic necrosis virus. Aquaculture. 2019;499:160–6.CrossRefGoogle Scholar
  57. 57.
    Shike H, Dhar AK, Burns JC, Shimizu C, Jousset FX, Klimpel KR, et al. Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito brevidensoviruses. Virology. 2000;277:167–77.CrossRefPubMedGoogle Scholar
  58. 58.
    Spann K, Adlard R, Hudson D, Pyecroft S, Jones T, Voigt M. Hepatopancreatic parvo-like virus (HPV) of Penaeus japonicus cultured in Australia. Dis Aquat Organ. 1997;31:239–41.CrossRefGoogle Scholar
  59. 59.
    Sukhumsirichart W, Wongteerasupaya C, Boonsaeng V, Panyim S, Sriurairatana S, Withyachumnarnkul B, et al. Characterization and PCR detection of hepatopancreatic parvovirus (HPV) from Penaeus monodon in Thailand. Dis Aquat Organ. 1999;38:1–10.CrossRefPubMedGoogle Scholar
  60. 60.
    Sukhumsirichart W, Attasart P, Boonsaeng V, Panyim S. Complete nucleotide sequence and genomic organization of hepatopancreatic parvovirus (HPV) of Penaeus monodon. Virology. 2006;346:266–77.CrossRefPubMedGoogle Scholar
  61. 61.
    Tang KFJ, Lightner DV. Detection and quantification of infectious hypodermal and hematopoietic necrosis virus in penaeid shrimp by real-time PCR. Dis Aquat Organ. 2001;44:79–85.CrossRefPubMedGoogle Scholar
  62. 62.
    Tang KFJ, Lightner DV. Low sequence variation among isolates of infectious hypodermal and hematopoietic necrosis virus (IHHNV) originating from Hawaii and the Americas. Dis Aquat Organ. 2002;49:93–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Tang KFJ, Lightner DV. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) -related sequences in the genome of the black tiger prawn Penaeus monodon from Africa and Australia. Virus Res. 2006;118:185–91.CrossRefPubMedGoogle Scholar
  64. 64.
    Tang KFJ, Durand SV, White BL, Redman RM, Pantoja CR, Lightner DV. Postlarvae and juveniles of a selected line of Penaeus stylirostris are resistant to infectious hypodermal and hematopoietic necrosis virus infection. Aquaculture. 2000;1:203–10.CrossRefGoogle Scholar
  65. 65.
    Tang KFJ, Poulos B, Wang J, Redman R, Shih H, Lightner DV. Geographic variations among infectious hypodermal and hematopoietic necrosis virus (IHHNV) isolates and characteristics of their infection. Dis Aquat Organ. 2003;53:91–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Tang KFJ, Navarro SA, Lightner DV. PCR assay for discriminating between infectious hypodermal and hematopoietic necrosis virus (IHHNV) and virus-related sequences in the genome of Penaeus monodon. Dis Aquat Organ. 2007;74:165–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Tang KFJ, Pantoja C, Lightner DV. Nucleotide sequence of a Madagascar hepatopancreatic parvovirus (HPV) and comparison of genetic variation among geographic isolates. Dis Aquat Organ. 2008;80:105–12.CrossRefPubMedGoogle Scholar
  68. 68.
    Tirasophon W, Yodmuang S, Chinnirunvong W, Plongthongkum N, Panyim S. Therapeutic inhibition of yellow head virus multiplication in infected shrimps by YHV-protease dsRNA. Antiviral Res. 2007;74:150–5.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Virological Society 2019

Authors and Affiliations

  • Arun K. Dhar
    • 1
    Email author
  • Roberto Cruz-Flores
    • 1
  • Luis Fernando Aranguren Caro
    • 1
  • Halina M. Siewiora
    • 1
  • Darryl Jory
    • 2
  1. 1.Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical SciencesThe University of ArizonaTucsonUSA
  2. 2.Global Aquaculture AlliancePortsmouthUSA

Personalised recommendations