Skip to main content
Log in

In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Groundnut bud necrosis virus (GBNV) is an economically important tospovirus transmitted by Thrips palmi (Thysanoptera: Thripidae). The current understanding of thrips-tospovirus interactions is largely based on the tomato spotted wilt virus-Frankliniella occidentalis relationship. Only limited information is available for the GBNV-T. palmi system. In the present study, available genome data of T. palmi and GBNV were used to predict the protein partners that may play a crucial role in the internalization of GBNV virions into thrips cells. Computational analyses showed that the GBNV precursor glycoprotein bears a signal peptide of 24 amino acids and a secondary cleavage site at position 434–435 separates the amino-terminal mature glycoprotein (GN) from the carboxyl-terminal glycoprotein (GC). Potential interactions of GBNV glycoproteins were predicted with T. palmi enolase, cathepsin, C-type lectin, clathrin and vacuolar ATP synthase subunit E. The in silico analyses suggested that C-type lectin is the primary cellular receptor to interact with GBNV-GN. After receptor binding, virus particles probably enter vector cells by clathrin-mediated endocytosis. This is the first in silico evidence of GBNV-T. palmi protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early bunyavirus-host cell interactions. Viruses. 2016;8:143.

    Article  CAS  PubMed Central  Google Scholar 

  2. Andrusier N, Nussinov R, Wolfson HJ. FireDock: fast interaction refinement in molecular docking. Proteins. 2007;69:139–59.

    Article  CAS  PubMed  Google Scholar 

  3. Badillo-Vargas IE, Rotenberg D, Schneweis DJ, Hiromasa Y, Tomich JM, Whitfield AE. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato Spotted Wilt Virus infection. J Virol. 2012;86:8793–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. Endosomal proteolysis of the ebola virus glycoprotein is necessary for infection. Science. 2005;308:1643–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: International workshop on algorithms in bioinformatics, Springer, Berlin, pp 185–200.

  6. Evgeny K. Crystal contacts as nature’s docking solutions. J Comput Chem. 2010;31:133–43.

    Article  CAS  Google Scholar 

  7. Garry CE, Garry RF. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model. 2004;1:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghosh A, Dey D, Timmanna, Basavaraj, Mandal B, Jain RK (2017) Thrips as the vectors of tospoviruses in Indian agriculture. In: A century of plant virology in India, Springer, Singapore, pp 537–561.

  10. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–23.

    Article  CAS  PubMed  Google Scholar 

  11. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013;87:4384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hofmann K, Stoffel W. TMbase—a database of membrane spanning proteins segments. Bio Chem Hoppe-Seyler. 1993;374:166.

    Google Scholar 

  13. Hollidge BS, Nedelsky NB, Salzano MV, Fraser JW, Gonzalez-Scarano F, Soldan SS. Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J Virol. 2012;86:7988–8001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kreyszig E. Advanced engineering mathematics. 4th ed. Berlin: Wiley; 1979. p. 880. ISBN 0-471-02140-7.

    Google Scholar 

  15. Krissinel E, Henrick K (2005) Detection of protein assemblies in crystals. In: International symposium on computational life science, Springer, Berlin, pp 163–174.

  16. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–97.

    Article  CAS  PubMed  Google Scholar 

  17. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Mandal B, Geetanjali AS, Jain RK, Jaiwal PK. Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus Archieves of. Virology. 2010;155:1361–5.

    CAS  Google Scholar 

  19. Léger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY. Differential use of the C-type lectins L-SIGN and DC-SIGN for Phlebovirus endocytosis. Traffic. 2016;17:639–56.

    Article  CAS  PubMed  Google Scholar 

  20. Löber C, Anheier B, Lindow S, Klenk HD, Feldmann H. The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology. 2001;289:224–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lozach PY, Kühbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe. 2011;10:75–88.

    Article  CAS  PubMed  Google Scholar 

  22. Mandal B, Jain RK, Krishnareddy M, Krishna Kumar NK. Emerging problems of tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Dis. 2012;96:468–78.

    Article  CAS  PubMed  Google Scholar 

  23. Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides. Trends Cell Biol. 1998;8:410–5.

    Article  CAS  PubMed  Google Scholar 

  24. Mashiach E, Mashiach E, Schneidman-Duhovny D, Schneidman-Duhovny D, Andrusier N, Andrusier N, Nussinov R, Nussinov R, Wolfson HJ. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008;36:229–32.

    Article  CAS  Google Scholar 

  25. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, GrobeP GuS, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, Von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TKF, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.

    Article  CAS  PubMed  Google Scholar 

  26. Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.

    Article  CAS  PubMed  Google Scholar 

  27. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics. 2014;30:1771–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramachandran S, Kota P, Ding F, Dokholyan NV. Automated minimization of steric clashes in protein structures. Proteins. 2011;79:261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reddy DVR, Buiel AAMT, Satyanarayana SL, Dwivedi AS, Reddy AS et al. (1995) Peanut bud necrosis virus disease: an overview in Recent Studies on Peanut Bud Necrosis Disease, Patancheru, India, 20 March 1995, ICRISAT Asia Centre pp 3–7.

  30. Sakimura K. Frankliniella fusca, an additional vector for the tomato spotted wilt virus, with notes on Thrips tabaci, a thrips vector. Phytopathology. 1963;53:412–5.

    Google Scholar 

  31. Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

    Article  PubMed  Google Scholar 

  32. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:363–7.

    Article  CAS  Google Scholar 

  33. Schneweis DJ, Whitfield AE, Rotenberg D. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology. 2017;500:226–37.

    Article  CAS  PubMed  Google Scholar 

  34. Shrestha A, Champagne DE, Culbreath AK, Rotenberg D, Whitfield AE, Srinivasan R. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). J Gen Virol. 2017;98:2156–70.

    Article  CAS  PubMed  Google Scholar 

  35. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KTBG, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Paul Bennett E, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO J. 2013;32:1478–88.

    Article  CAS  PubMed  Google Scholar 

  36. Švajger U, Anderluh M, Jeras M, Obermajer N. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal. 2010;22:1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tusnády GE, Simon I. Principles governing amino acid composition of integral membrane proteins: applications to topology prediction. J Mol Biol. 1998;283:489–506.

    Article  PubMed  Google Scholar 

  38. Ullman DE, German TL, Sherwood JL, Westcot DM. Thrips biology and management. New York: Plenum; 1992. p. 135–52.

    Google Scholar 

  39. Ullman DE, Sherwood J, German TL. Thrips as vectors of plant pathogens. In: Lewis T, editor. Thrips as crop pests. New York: CAB International; 1997. p. 539–65.

    Google Scholar 

  40. Vijayalakshmi K (1994) Transmission and ecology of Thrips palmi Karny, the vector of peanut bud necrosis virus in Ph.D. thesis Andhra Pradesh Agril University, Rajendranagar, Hydarabad India, p 120.

  41. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Tatusova TA, Wagner L. Database resources of the national center for biotechnology. Nucleic Acids Res. 2003;31:28–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitfield AE, Ullman DE, German TL. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein Gn. J Virol. 2004;78:13197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitfield AE, Ullman DE, German TL. Tomato spotted wilt virus glycoprotein Gc is cleaved at acidic pH. Virus Res. 2005;110:183–6.

    Article  CAS  PubMed  Google Scholar 

  44. Whitfield AE, Ullman DE, German TL. Tospovirus-thrips interactions. Annu Rev Phytopathol. 2005;43:459–89.

    Article  CAS  PubMed  Google Scholar 

  45. Widana Gamage SMK, Rotenberg D, Schneweis DJ, Tsai C-W, Dietzgen RG. Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLoS ONE. 2018;13:e0208538.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–10.

    Article  Google Scholar 

  47. Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genom. 2010;11:303.

    Article  CAS  Google Scholar 

  48. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Ralf. G. Dietzgen (QAAFI, the University of Queensland) for thorough read and editing of the final manuscript. We thank Dr. Dinesh Gupta (ICGEB, New Delhi) and Dr. Abhishek Mandal (IARI, New Delhi) for suggestions and discussions during the analyses. Two anonymous reviewers are thanked for critically reading the manuscript and suggesting substantial improvements. The research was supported by the research grants of IARI, and DBT (BT/PR26136/AGIII/103/1005/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5029 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagdale, S.S., Ghosh, A. In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. VirusDis. 30, 245–251 (2019). https://doi.org/10.1007/s13337-019-00521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-019-00521-w

Keywords

Navigation