Advertisement

VirusDisease

, Volume 30, Issue 1, pp 3–12 | Cite as

ssDNA viruses: key players in global virome

  • V. G. MalathiEmail author
  • P. Renuka Devi
Review Article

Abstract

Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. High throughput genome sequencing and improved bioinformatics tools have yielded vast information on presence of ssDNA viruses in diverse habitats. The simple genome of ssDNA viruses have high propensity to undergo mutation and recombination often emerging as threat to human civilization. Interestingly their genome is found embedded in fossils dating back to million years. The unusual evolutionary history of ssDNA viruses reveal evidences of horizontal gene transfer, sometimes between different species and genera.

Keywords

ssDNA CRESS viruses Rolling circle replication 

Notes

References

  1. 1.
    Aiewsakun P, Katzourakis A. Endogenous viruses: connecting recent and ancient viral evolution. Virology. 2015;479–480:26–37.CrossRefPubMedGoogle Scholar
  2. 2.
    Amin I, Mansoor S, Amrao L, Hussain M, Irum S, Zafar Y, Bull SE, Briddon RW. Mobilisation into cotton and spread of a recombinant cotton leaf curl disease satellite—brief report. Arch Virol. 2006;151:2055–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Ashby E. Notes on Psephotus haematonotus, the red-rumped grass Parrakeet. Avic Mag. 1921;12:131–3.Google Scholar
  4. 4.
    Bejarano ER, Khashoggi A, Witty M, Lichtenstein C. Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci USA. 1996;93:759–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Belyi VA, Levine AJ, Skalka AM. Sequences from ancestral single-stranded DNA viruses in vertebrate genomes: the Parvoviridae and Circoviridae are more than 40 to 50 million years old. J Virol. 2010;84:12458–62.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Fiallo-Olive E, Moriones E, Lett J-M, Zerbini FM, Varsani A. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol. 2018.  https://doi.org/10.1007/s00705-018-3854-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Cotmore SF, Tattersall P. Resolution of parvovirus dimer junctions proceeds through a novel heterocruciform intermediate. J Virol. 2003;77:6245–54.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cotmore SF, Tattersall P. Parvoviruses: small does not mean simple. Annu Rev Virol. 2014;1:517–37.CrossRefPubMedGoogle Scholar
  9. 9.
    Dayaram A, Galatowitsch ML, Arguello-Astorga GR, van Bysterveldt K, Kraberger S, Stainton D, Harding JS, Roumagnac P, Martin DP, Lefeuvre P, Varsani A. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. Infect Genet Evol. 2016;39:304–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Dennis TPW, Flynn PJ, Marciel de Souza W, Singer JB, Moreau CS, Wilson SJ, Gifford RJ. Insights into circovirus host range from the genomic fossil record. J Virol. 2018;9:2e00145-18.Google Scholar
  11. 11.
    Diemer GS, Stedman KM. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct. 2012;7:13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Filloux D, Murrell S, Koohapitagtam M, Golden M, Julian C, Galzi S, Uzest M, Rodier-Goud M, D’Hont A, Vernerey MS, Wilkin P, Peterschmitt M, Winter S, Murrell B, Martin DP, Roumagnac P. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. 2015;1:vev002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Franzo G, Segales J, Tucciarone CM, Cecchinato M, Drigo M. The analysis of genome composition and codon bias reveals distinctive patterns between avian and mammalian circoviruses which suggest a potential recombinant origin for porcine circovirus 3. PLoS ONE. 2018;13:e0199950.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gibbs MJ, Smeianov VV, Steele JL, Upcroft P, Efimov BA. Two families of rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes. Mol Biol Evol. 2006;23:1097–100.CrossRefPubMedGoogle Scholar
  15. 15.
    Goodman RM. Infectious DNA from a whitefly-transmitted virus of Phaseolus vulgaris. Nature. 1977;266:54.CrossRefGoogle Scholar
  16. 16.
    Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struct Biol. 1993;3:419–29.CrossRefGoogle Scholar
  17. 17.
    Gutierrez C, Ramirez-Parra E, Castellano MM, Sanz-Burgos AP, Luque A, Missich R. Geminivirus DNA replication and cell cycle interactions. Vet Microbiol. 2004;98:111–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11:777–88.CrossRefGoogle Scholar
  19. 19.
    Harrison BD, Barker H, Bock KR, Guthrie EJ, Meredith G, Atkinson M. Plant viruses with circular single-stranded DNA. Nature. 1977;270:760.CrossRefGoogle Scholar
  20. 20.
    Hayward A, Katzourakis A. Endogenous retroviruses. Curr Biol. 2015;25:R644–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Hefferon KL, Moon YS, Fan Y. Multi-tasking of nonstructural gene products is required for bean yellow dwarf geminivirus transcriptional regulation. FEBS J. 2006;273:4482–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Ilyina TV, Koonin EV. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 1992;20:3279–85.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kazlauskas D, Dayaram A, Kraberger S, Goldstien S, Varsani A, Krupovic M. Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology. 2017;504:114–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Kazlauskas D, Varsani A, Krupovic M. Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses. 2018;10:187.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Koonin EV, Ilyina TV. Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA-replication initiator proteins. J Gen Virol. 1992;73:2763–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Krupovic M. Recombination between RNA viruses and plasmids might have played a central role in the origin and evolution of small DNA viruses. BioEssays. 2012;34:867–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Krupovic M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr Opin Virol. 2013;3:578–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann N Y Acad Sci. 2015;1341:41–53.CrossRefPubMedGoogle Scholar
  29. 29.
    Krupovic M, Koonin EV. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep. 2014;4:5347.  https://doi.org/10.1038/srep05347.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krupovic M, Ravantti JJ, Bamford DH. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol. 2009;9:112.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Krupovic M, Zhi N, Li J, Hu G, Koonin EV, Wong S, Shevchenko S, Zhao K, Young NS. Multiple layers of chimerism in a single-stranded DNA virus discovered by deep sequencing. Genome Biol Evol. 2015;7:993–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kryukov K, Ueda MT, Imanishi T, Nakagawa S. Systematic survey of non-retroviral virus-like elements in eukaryotic genomes. Virus Res. 2018;262:30–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Lefeuvre P, Lett JM, Varsani A, Martin DP. Widely conserved recombination patterns among single-stranded DNA viruses. J Virol. 2009;83:2697–707.CrossRefPubMedGoogle Scholar
  34. 34.
    Lefeuvre P, Harkins GW, Lett J-M, Briddon RW, Chase MW, Moury B, Martin DP. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS ONE. 2011;6:e19193.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E. Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol. 2010;84:1674–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Peng Y, Yi X, Jiang D. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J Virol. 2011.  https://doi.org/10.1128/JVI.00828-11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Malathi VG, Renukadevi P, Rageshwari S. Molecular dynamics of geminivirus–host interactome. In: Gaur RK, Khurana SMP, Dorokhov Y, editors. Plant viruses, diversity, interaction and management. Boca Raton: CRC Press; 2017. p. 173–89. ISBN 978-1-138-06151-4.Google Scholar
  38. 38.
    Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ. Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol. 1997;71:2562–6.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Manni F, Rotola A, Caselli E, Bertorelle G, Di Luca D. Detecting recombination in tt virus: a phylogenetic approach. J Mol Evol. 2002;55:563–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Recombination in eukaryotic single stranded DNA viruses. Viruses. 2011;3(9):1699–738.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ng TF, Chen LF, Zhou Y, Shapiro B, Stiller M, Heintzman PD, Varsani A, Kondov NO, Wong W, Deng X, Andrews TD, Moorman BJ, Meulendyk T, MacKay G, Gilbertson RL, Delwart E. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci USA. 2014;111:16842–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Okamoto H, Takahashi M, Nishizawa T, Tawara A, Sugai Y, Sai T, Tanaka T, Tsuda F. Replicative forms of tt virus DNA in bone marrow cells. Biochem Biophys Res Commun. 2000;270:657–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Okamoto H, Ukita M, Nishizawa T, Kishimoto J, Hoshi Y, Mizuo H, Tanaka T, Miyakawa Y, Mayumi M. Circular double-stranded forms of tt virus DNA in the liver. J Virol. 2000;74:5161–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Opriessnig T, Meng X-J, Halbur PG. Porcine circovirus type 2-associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest. 2007;19:591–615.CrossRefGoogle Scholar
  45. 45.
    Pita JS, Fondong VN, Sangare A, Kokora RNN, Fauquet CM. Genomic and biological diversity of the african cassava geminiviruses. Euphytica. 2001;120:115–25.CrossRefGoogle Scholar
  46. 46.
    Quaiser A, Krupovic M, Dufresne A, Francez AJ, Roux S. Diversity and comparative genomics of chimeric viruses in sphagnum-dominated peatlands. Virus Evol. 2016;2:vew025.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ritchie PA, Anderson IL, Lambert DM. Evidence for specificity of psittacine beak and feather disease viruses among avian hosts. Virology. 2003;306:109–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Rokyta DR, Wichman HA. Genic incompatibilities in two hybrid bacteriophages. Mol Biol Evol. 2009;26:2831–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rosario K, Duffy S, Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol. 2009;90:2418–24.CrossRefPubMedGoogle Scholar
  50. 50.
    Rosario K, Duffy S, Breitbart M. A field guide to eukaryotic circular single stranded DNA viruses: insights gained from metagenomics. Arch Virol. 2012;157:1851–71.CrossRefPubMedGoogle Scholar
  51. 51.
    Roux S, Enault F, Bronner G, Vaulot D, Forterre P, Krupovic M. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat Commun. 2013;4:2700.CrossRefPubMedGoogle Scholar
  52. 52.
    Rybicki EP. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol. 1994;139:49–77.CrossRefPubMedGoogle Scholar
  53. 53.
    Saunders K, Lucy A, Stanley J. DNA forms of the geminivirus african cassava mosaic-virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res. 1991;19:2325–30.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Saunders K, Bedford ID, Yahara T, Stanley J. The earliest recorded plant virus disease. Nature. 2003;422:831.CrossRefPubMedGoogle Scholar
  55. 55.
    Shackelton LA, Holmes EC. Phylogenetic evidence for the rapid evolution of human b19 erythrovirus. J Virol. 2006;80:3666–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AM, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM. Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayarama A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. Infect Genet Evol. 2016;43:151–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Suttle CA. Viruses: unlocking the greatest biodiversity on Earth. Genome. 2013;56:542–4.CrossRefPubMedGoogle Scholar
  59. 59.
    Tattersall P, Ward DC. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature. 1976;263:106–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Tischer I, Rasch R, Tochtermann G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralblatt fur€ Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie. 1974;226:153–67.Google Scholar
  61. 61.
    Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982;295:64–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Vidigal PMP, Mafra CL, Silva FMF, Fietto JLR, Silva Júnior A, Almeida MR. Tripping over emerging pathogens around the world: a phylogeographical approach for determining the epidemiology of porcine circovirus-2 (PCV-2), considering global trading. Virus Res. 2012;163:320–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic circular Rep encoding single stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res. 2018.  https://doi.org/10.1016/bs.arvir2018.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Virological Society 2019

Authors and Affiliations

  1. 1.Department of Plant PathologyTamil Nadu Agricultural UniversityCoimbatoreIndia
  2. 2.Department of SericultureForest College and Research InstituteMettupalayamIndia

Personalised recommendations