Advertisement

VirusDisease

, Volume 30, Issue 1, pp 22–31 | Cite as

Recent advances in understanding the replication initiator protein of the ssDNA plant viruses of the family Nanoviridae

  • Sangita VenkataramanEmail author
  • R. SelvarajanEmail author
REVIEW ARTICLE

Abstract

The families of viruses possessing single-stranded (ss) circular genome employ a dedicated replication initiator protein (Rep) for making copies of their genome through the process of rolling circle replication. The replication begins at conserved nonanucleotide sequence at the intergenic region. The Rep protein seems to be the most conserved amongst the available proteins of the nanovirids and comprises of the N-terminal endonuclease domain and the C-terminal helicase domain. The structural studies of Faba bean necrotic yellows virus endonuclease domain suggests a α + β fold comprising of central β sheet built from five antiparallel β strands surrounded by outer short α helices. The catalysis is mediated by a conserved Tyr residue and employs divalent metal ions (Mn2+). On one hand, the Reps associate with each other and oligomerize and on the other hand interact with varied host and vector associated proteins for successful infection. The sequence analysis of Reps from previously known nanovirids and the newly found ones from metagenomics data shed light on the evolutionary pattern of nanovirids in comparison to other plant infecting ssDNA viruses.

Keywords

Nanoviridae Replication initiator protein Rolling circle replication Molecular phylogeny Structural motifs Interactions 

Notes

Supplementary material

13337_2019_514_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOC 27 kb)

References

  1. 1.
    Berman H, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucl Acids Res. 2000;28:235–42.  https://doi.org/10.1093/nar/28.1.235.CrossRefPubMedGoogle Scholar
  2. 2.
    Biagini P. Classification of TTV and related viruses (Anelloviruses). In: de Villiers E-M, Zur H, editors. TT viruses: the still elusive human pathogens. Berlin: Springer; 2009. p. 21–33.CrossRefGoogle Scholar
  3. 3.
    Breitbart M, Delwart E, Rosario K, Segales J, Varsani A, Consortium IR. ICTV virus taxonomy profile: Circoviridae. J Gen Virol. 2017;98:1997–8.  https://doi.org/10.1099/jgv.0.000871.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Elvira F-O, Moriones E, Lett J-M, Zerbini FM, Varsani A. Alphasatellitidae : a new family with two subfamilies for the classification of geminivirus—and nanovirus—associated alphasatellites. Arch Virol. 2018.  https://doi.org/10.1007/s00705-018-3854-2.CrossRefPubMedGoogle Scholar
  5. 5.
    Burns TM, Harding RM, Dale JL. The genome organization of banana bunchy top virus: analysis of six ssDNA components. J Gen Virol. 1995;76:1471–82.CrossRefGoogle Scholar
  6. 6.
    Campos-Olivas R, Louis J, Clerot D, Gronenborn B, Gronenborn A. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci USA. 2002;99:10310–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Can MC, Rodrı EA, Moriones E, Bejarano ER, Grande-Pe A. A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses. Sci Rep. 2014;4:6438.  https://doi.org/10.1038/srep06438.CrossRefGoogle Scholar
  8. 8.
    Castillo AG, Collinet D, Deret S, Kashoggi A, Bejarano ER. Dual interaction of plant PCNA with geminivirus replication accessory protein (REn) and viral replication protein (Rep). Virology. 2003;312:381–94.  https://doi.org/10.1016/S0042-6822(03)00234-4.CrossRefPubMedGoogle Scholar
  9. 9.
    Choi I, Stenger D. Strain-specific determinants of beet curly top geminivirus DNA replication. Virology. 1995;206:904–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Clerot D, Bernardi F. DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol. 2006;80:11322–30.  https://doi.org/10.1128/JVI.00924-06.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cotmore SF, Davison AJ. The family Parvoviridae. Arch Virol. 2015;159:1239–47.  https://doi.org/10.1007/s00705-013-1914-1.The.CrossRefGoogle Scholar
  12. 12.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004;32:1792–7.  https://doi.org/10.1093/nar/gkh340.CrossRefPubMedGoogle Scholar
  13. 13.
    Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge J, Chang H, Doszt Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings D, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh L, Young S, Mitchell AL. InterPro in 2017—beyond protein family and domain annotations. Nucl Acids Res. 2017;45:190–9.  https://doi.org/10.1093/nar/gkw1107.CrossRefGoogle Scholar
  14. 14.
    Fondong V. Geminivirus protein structure and function. Mol Plant Pathol. 2013;14:635–49.CrossRefGoogle Scholar
  15. 15.
    Gibbs MJ, Weiller GF. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci. 1999;96:8022–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Grigoras I, Timchenko T, Gronenborn B. Transcripts encoding the nanovirus master replication initiator proteins are Transcripts encoding the nanovirus master replication initiator proteins are terminally redundant. J Gen Virol. 2008.  https://doi.org/10.1099/vir.0.83352-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Grigoras I, Timchenko T, Gronenborn B. Transcripts encoding the nanovirus master replication initiator proteins are terminally redundant. J Gen Virol. 2008;89:583–93.  https://doi.org/10.1099/vir.0.83352-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Gronenborn B, Randles JW, Knierim D, Barrière Q, Vetten HJ, Warthmann N, Cornu D, Sileye T, Winter S, Timchenko T. Analysis of DNAs associated with coconut foliar decay disease implicates a unique single-stranded DNA virus representing a new taxon. Sci Rep. 2018.  https://doi.org/10.1038/s41598-018-23739-y.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gutierrez C, Ramirez-Parra E, Castellano MM, Sanz-Burgos AP, Luque A, Missich R. Geminivirus DNA replication and cell cycle interactions. Vet Microbiol. 2004;98:111–9.  https://doi.org/10.1016/j.vetmic.2003.10.012.CrossRefPubMedGoogle Scholar
  20. 20.
    Herrera-Valencia VA, Dugdale B, Harding RM, Dale JL. An iterated sequence in the genome of Banana bunchy top virus is essential for efficient replication. J Gen Virol. 2006;87:3409–12.  https://doi.org/10.1099/vir.0.82166-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Heydarnejad J, Kamali M, Massumi H, Kvarnheden A, Male MF, Kraberger S, Stainton D, Martin DP, Varsani A. Identification of a nanovirus–alphasatellite complex in Sophora alopecuroides. Virus Res. 2017;235:24–32.  https://doi.org/10.1016/j.virusres.2017.03.023.CrossRefPubMedGoogle Scholar
  22. 22.
    Hickman AB, Ronning DR, Perez ZN, Kotin RM, Dyda F. The nuclease domain of adeno-associated virus rep coordinates replication initiation using two distinct DNA recognition interfaces. Mol Cell. 2004;13:403–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Horser C, Harding R, Dale J. Banana bunchy top nanovirus DNA-1 encodes the “master” replication initiation protein. J Gen Virol. 2001;82:459–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Kazlauskas D, Dayaram A, Kraberger S, Goldstien S. Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses. Virology. 2017;504:114–21.  https://doi.org/10.1016/j.virol.2017.02.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Kazlauskas D, Varsani A, Krupovic M. Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses. 2018;10:1–11.  https://doi.org/10.3390/v10040187.CrossRefGoogle Scholar
  26. 26.
    Kong L, Hanley-Bowdoin L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell. 2002;14:1817–32.  https://doi.org/10.1105/tpc.003681.AL1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kong L, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue speci® city of infection in plants. EMBO J. 2000;19:3485–95.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Krenz B, Schieß I, Greiner E, Krapp S. Analyses of pea necrotic yellow dwarf virus-encoded proteins. Virus Genes. 2017.  https://doi.org/10.1007/s11262-017-1439-x.CrossRefPubMedGoogle Scholar
  29. 29.
    Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucl Acids Res. 2018;46:708–17.  https://doi.org/10.1093/nar/gkx932.CrossRefGoogle Scholar
  30. 30.
    Luque A, Sanz-Burgos P, Ramirez-Parra E, Castellano MM, Gutierrez C. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology. 2002;302:83–94.  https://doi.org/10.1006/viro.2002.1599.CrossRefPubMedGoogle Scholar
  31. 31.
    Mandal B. Advances in small isometric multicomponent ssDNA viruses infecting plants. Indian J Virol. 2010;21:18–30.  https://doi.org/10.1007/s13337-010-0010-3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A. Recombination in eukaryotic single stranded DNA viruses. Viruses. 2011;3:1699–738.  https://doi.org/10.3390/v3091699.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Missich R, Ramirez-Parra E, Gutierrez C. Relationship of oligomerization to DNA binding of wheat dwarf virus RepA and Rep proteins. Virology. 2000;188:178–88.  https://doi.org/10.1006/viro.2000.0412.CrossRefGoogle Scholar
  34. 34.
    Mware BO. Development of Banana bunchy top virus resistance in bananas: RNAi approach. Ph.D. thesis. Queensland University of Technology; 2016.Google Scholar
  35. 35.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualisation system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Selvarajan R, Mandal B, Balasubramanian V, Banerjee A, Vijayanandraj S, Ghosh A. Biology and molecular biology of babuviruses occurring in India. In: Mandal B, Rao GP, Baranwal V, Jain R, editors. A century of plant virology in India. Singapore: Springer; 2017. pp. 27–48.CrossRefGoogle Scholar
  37. 37.
    Shatsky M, Nussinov R, Wolfson HJ. A method for simultaneous alignment of multiple protein structures. Proteins. 2004;56:143–56.  https://doi.org/10.1002/prot.10628.CrossRefPubMedGoogle Scholar
  38. 38.
    Sicard A, Michalakis Y, Gutiérrez S, Blanc S. The strange lifestyle of multipartite viruses. PLoS Pathog. 2016;12:1–19.  https://doi.org/10.1371/journal.ppat.1005819.CrossRefGoogle Scholar
  39. 39.
    Stenlund A. Initiation of DNA replication: lessons from viral initiator proteins. Nat Rev Mol Cell Biol. 2003;4:777–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 60. Mol Biol Evol. 2013;30:2725–9.  https://doi.org/10.1093/molbev/mst197.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Timchenko T, de Kouchkovsky F, Katul L, David C, Vetten HJ, Gronenborn B. A single rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. J Virol. 1999;73:10173–82.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Timchenko T, Katul L, Sano Y, De Kouchkovsky F, Vetten HJ, Gronenborn B. The master rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology. 2000;274:189–95.  https://doi.org/10.1006/viro.2000.0439.CrossRefPubMedGoogle Scholar
  43. 43.
    Timchenko T, Katul L, Sano Y. The master rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology. 2000;195:189–95.  https://doi.org/10.1006/viro.2000.0439.CrossRefGoogle Scholar
  44. 44.
    Timchenko T, Katul L, Aronson M. Infectivity of nanovirus DNAs: induction of disease by cloned genome components of Faba bean necrotic yellows virus Infectivity of nanovirus DNAs: induction of disease by cloned genome components of Faba bean necrotic yellows virus. J Gen Virol. 2006;87:1735–43.  https://doi.org/10.1099/vir.0.81753-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Varsani A, Krupovic M, Krupovic M. Smacoviridae: a new family of animal—associated single—stranded DNA viruses. Arch Virol. 2018.  https://doi.org/10.1007/s00705-018-3820-z.CrossRefPubMedGoogle Scholar
  46. 46.
    Vega-Arreguı JC, Timchenko T, Gronenborn B, Ramırez BC. A functional histidine-tagged replication initiator protein: implications for the study of single-stranded DNA virus replication in planta†. J Virol. 2005;79:8422–30.  https://doi.org/10.1128/JVI.79.13.8422.CrossRefGoogle Scholar
  47. 47.
    Vega-Rocha S, Gronenborn B, Gronenborn AM, Campos-Olivas R. Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus Faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry. 2007;46:6201–12.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vega-Rocha S, Byeon IJL, Gronenborn B, Gronenborn AM, Campos-Olivas R. Solution structure, divalent metal and DNA binding of the endonuclease domain from the replication initiation protein from porcine circovirus 2. J Mol Biol. 2007;367:473–87.  https://doi.org/10.1016/j.jmb.2007.01.002.CrossRefPubMedGoogle Scholar
  49. 49.
    Venkataraman S, Savithri HS, Murthy MRN. Structural aspects of plant viruses. In: Gaur RK, Khurana SMP, Dorokhov Y, editors. Plant viruses diversity, interaction and management; CRC Press, Taylor and Francis Group 2018. pp. 3–26.Google Scholar
  50. 50.
    Venkataraman S, Prasad BVLS, Selvarajan R. RNA dependent RNA polymerases: insights from structure, function and evolution. Viruses. 2018;10:76.  https://doi.org/10.3390/v10020076.CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Vetten H. Nanoviruses. In: Mahy BW, Van Regenmortel MHV, editors. Encyclopedia of virology. 3rd ed. Oxford: Elsevier; 2008. p. 385–91.CrossRefGoogle Scholar
  52. 52.
    Virol A, Krupovic M. Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol. 2016;1:8.  https://doi.org/10.1007/s00705-016-2943-3.CrossRefGoogle Scholar
  53. 53.
    Wanitchakorn R, Harding R, Dale J. Banana bunchy top virus DNA-3 encodes the viral coat protein. Arch Virol. 1997;142:1673–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, Consortium IR. ICTV ICTV virus taxonomy profile: Geminiviridae. J Gen Virol. 2017;98:131–3.  https://doi.org/10.1099/jgv.0.000738.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Virological Society 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyAcharya Nagarjuna UniversityGunturIndia
  2. 2.ICAR National Research Centre for BananaTiruchirapalliIndia

Personalised recommendations