Skip to main content
Log in

Mycovirus associated hypovirulence, a potential method for biological control of Fusarium species

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Fusarium is a large genus of filamentous fungi belongs to the division Ascomycota and was first described as Fusisporium. Innumerable members of this genus act as pathogens, endophytes and saprophytes and can be recovered from plants and soils worldwide. Many of these members are known to be phytopathogens. It is among the most diverse and widely dispersed phyto-pathogenic fungi which cause economically important blights, rots, wilts and cankers of many ornamental, field, horticultural and forest crops both in agricultural commodities and natural ecosystems. Some species, e.g. F. graminearum and F. verticillioides have a narrow host range and mainly infect the cereals, whereas F. oxysporum has effects on both monocotyledonous and dicotyledonous plants. Attempts have been made to control the diseases caused by Fusarium sp. and to minimize crop yield losses. Till date, effective and eco-friendly methods have not been devised for the control of this devastating pathogen. A new potential of using mycovirus associated hypovirulence as biocontrol method against Fusarium species has been proposed. The present review taking into account of worldwide researches to provide possible insights for Fusarium-mycovirus coevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrami M, Yousefi Z. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma sp. as antagonist fungi. Biolog Forum Int J. 2015;7:887–92.

    Google Scholar 

  2. Aminian P, Azizollah A, Abbas S, Naser S. Effect of double-stranded RNAs on virulence and deoxynivalenol production of Fusarium graminearum isolates. J Plant Prot Res. 2011;51:29–37.

    Article  CAS  Google Scholar 

  3. Araújo A, Jansen AM, Bouchet F, Reinhard K, Ferreira LF. Parasitism, the diversity of life, and paleoparasitology. Mem Inst Oswaldo Cruz. 2003;98:5–11.

    Article  PubMed  Google Scholar 

  4. Bacon CW, Yates IE, Hinton DM, Meredith F. Virological control of Fusarium moniliforme in maize. Environ Health Persp. 2001;109:325–32.

    Article  CAS  Google Scholar 

  5. Buck KW, Brasier CM. Viruses of the Dutch elm disease fungi. In: Tavantzis SM, editor. dsRNA genetic elements: concepts and applications in agriculture, forestry, and medicine. Boca Raton: CRC Press; 2002. p. 165–90.

    Google Scholar 

  6. Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. A double-stranded RNA mycovirus confers hypovirulence associated traits to Botrytis cinerea. FEMS Microbiol Lett. 2003;228:87–91.

    Article  PubMed  CAS  Google Scholar 

  7. Chu YM, Jeon JJ, Yea SJ, Kim YH, Yun SH, Lee YW, et al. Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol. 2002;68:2529–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chu YM, Lim WS, Yea SJ, Cho JD, Lee YW, Kim KH. The complexity of dsRNA mycovirus isolated from Fusarium graminearum. Virus Genes. 2004;28:135–43.

    Article  PubMed  CAS  Google Scholar 

  9. Compel P, Papp I, Bibo M, Fekete C, Hornok L. Genetic interrelationships and genome organization of double-stranded RNA elements of Fusarium poae. Virus Genes. 1999;18:49–56.

    Article  PubMed  CAS  Google Scholar 

  10. Darissa O, Willingmann P, Schafer W, Adam G. A novel double-stranded RNA mycovirus from Fusarium graminearum: nucleic acid sequence and genomic structure. Arch Virol. 2011;156:647–58.

    Article  PubMed  CAS  Google Scholar 

  11. Dawe AL, Nuss DL. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet. 2001;35:1–29.

    Article  PubMed  CAS  Google Scholar 

  12. Deng F, Xu R, Boland G. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpais conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology. 2003;93:1407–14.

    Article  PubMed  CAS  Google Scholar 

  13. Dodds JA. dsRNA in diagnosis. In: Matthews REF, editor. Diagnosis of plant virus diseases. Boca Raton: CRC Press; 1993. p. 273–94.

    Google Scholar 

  14. Fekete C, Giczey G, Papp I, Szabó L, Hornok L. High-frequency occurrence of virus-like particles with double-stranded RNA genome in Fusarium poae. FEMS Microbiol Lett. 1995;131:295–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ghabrial SA, Suzuki N. Fungal viruses. In: Mahy BWJ, Van Regenmortel MHV, editors. Encyclopedia of virology, vol. 3. Oxford: Elsevier; 2008. p. 284–91.

    Chapter  Google Scholar 

  16. Göker M, Scheuner C, Klenk HP, Stielow JB, Menzel W. Codivergence of mycoviruses with their hosts. PLoS ONE. 2011;6:e22252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gupta S. Newer evidence to demonstrate mycovirus of Fusarium moniliforme var. glutinans as causal agent of mango shoot malformation. J Entomol Res Soc. 1991;15:222–8.

    Google Scholar 

  18. Heaton LA, Leslie JF. Double-stranded RNAs associated with Fusarium proliferatum mitochondria. Mycol Prog. 2004;3:193–8.

    Article  Google Scholar 

  19. Herrero N, Sánchez Márquez S, Zabalgogeazcoa I. Mycoviruses are common among different species of endophytic fungi of grasses. Arch Virol. 2009;154:327–30.

    Article  PubMed  CAS  Google Scholar 

  20. Hong Y, Dover SL, Cole TE, Brasier CM, Buck KW. Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi. Virology. 1999;258:118–27.

    Article  PubMed  CAS  Google Scholar 

  21. Jain SK, Khilari K, Ali M, Singh R. Response of Fusarium monoliforme—the causal organism of Bakanae Disease of Rice against different fungicides. Bioscan. 2014;9:413–6.

    Google Scholar 

  22. Jelkmann W, Martin RR, Lesemann DE, Vetten HJ, Skelton F. A new potexvirus associated with strawberry mild yellow edge disease. J Gen Virol. 1990;71:1251–8.

    Article  PubMed  CAS  Google Scholar 

  23. Kilic O, Griffin G. Effect of dsRNA-containing and dsRNA-free hypovirulent isolates of Fusarium oxysporum on the severity of Fusarium seedling disease of soybean in the naturally infested soil. Plant Soil. 1998;201:125–35.

    Article  CAS  Google Scholar 

  24. Knogge W. Fungal infection of plants. Plant Cell. 1996;8:1711–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kwon SJ, Lim WS, Park SH, Park MR, Kim KH. Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus-DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex-like viruses. Mol Cells. 2007;30:304–15.

    Google Scholar 

  26. Lee KM, Yu J, Son M, Lee YW, Kim KH. Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS ONE. 2011;6:e21629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li P, Zhang H, Chen X, Qiu D, Guo L. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology. 2015;481:151–60.

    Article  PubMed  CAS  Google Scholar 

  28. Lin Z, Xu S, Que Y, Wang J, Comstock JC. Species-specific detection and identification of Fusarium species complex, the causal agent of Sugarcane PokkahBoeng in China. PLoS ONE. 2014;9:e104195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu H, Fu Y, Jiang D, Li G, Xie J, Peng Y, et al. A novel mycovirus that is related to the human pathogen Hepatitis E virus and Rubi-like viruses. Phytopathology. 2009;155:65–9.

    Google Scholar 

  30. Marquina D, Santos A, Peinado JM. Biology of killer yeasts. Int Microbiol. 2002;5:65–71.

    Article  PubMed  CAS  Google Scholar 

  31. Marvelli RA, Hobbs HA, Li S, McCoppin NK, Domier LL, Hartman GL. Identification of novel double-stranded RNA mycoviruses of Fusarium virguliforme and evidence of their effects on virulence. Arch Virol. 2013;159:349–52.

    Article  PubMed  CAS  Google Scholar 

  32. May RM, Nowak MA. Coinfection and the evolution of parasite virulence. Proc R Soc B. 1995;261:209–15.

    Article  PubMed  CAS  Google Scholar 

  33. McCabe PM, Pfeiffer P, Van Alfen NK. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol. 1999;7:377–81.

    Article  PubMed  CAS  Google Scholar 

  34. Minor LCG, Canizares MC, Pedrajas G, Perez-Artes E. Complete genome sequence of a novel dsRNA mycovirus isolated from the phytopathogenic fungus Fusarium oxysporum f. sp. dianthi. Arch Virol. 2015;160:2375–89.

    Article  CAS  Google Scholar 

  35. Moleleki N, van Heerden SW, Wingfield MJ, Wingfield BD, Preisig O. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl Environ Microbiol. 2003;69:3952–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology and clinical aspects of Fusarium species. Clin Microbiol Rev. 1994;7:479–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nogawa M, Shimosaka M, Kageyama T, Okazaki M. A double stranded RNA mycovirus from the plant pathogenic fungus Fusarium solani f. sp. robiniae. FEMS Microbiol Lett. 1993;110:153–7.

    Article  CAS  Google Scholar 

  38. Nogawa M, Kageyama T, Nakatani A, Taguchi G, Shimosaka M, Okazaki M. Cloning and characterization of mycovirus double-stranded RNA from the plant pathogenic fungus, Fusarium solani f. sp. robiniae. Biosci Biotechnol Biochem. 1996;60:784–8.

    Article  PubMed  CAS  Google Scholar 

  39. Nuss DL. Hypovirulence: mycoviruses at the fungal–plant interface. Nat Rev Microbiol. 2005;3:632–42.

    Article  PubMed  CAS  Google Scholar 

  40. Nuss DL, Koltin Y. Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol. 1990;28:37–58.

    Article  PubMed  CAS  Google Scholar 

  41. Osaki H, Sasaki A, Nomiyama K, Sekiguchi H, Tomioka K, Takehara T. Isolation and characterization of two mitoviruses and a putative Alphapartitivirus from Fusarium sp. Virus Genes. 2015;50:466–73.

    Article  PubMed  CAS  Google Scholar 

  42. Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol. 2009;10:115–28.

    Article  PubMed  CAS  Google Scholar 

  43. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol. 2000;81:3107–14.

    Article  PubMed  CAS  Google Scholar 

  44. Recep K, Fikrettin S, Erkol D, Cafer E. Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control. 2009;50:194–8.

    Article  Google Scholar 

  45. Riad EMRS, Zeidan ESH. First record of core rot on apple fruit CV. Anna 106 local cultivar in Egypt. J Agric Technol. 2015;11:1371–80.

    Google Scholar 

  46. Rusli MH, Idris AS, Cooper RM. Evaluation of Malaysian oil palm progenies for susceptibility, resistance or tolerance of Fusarium oxysporum f. sp. elaeidis and defense-related gene expression in roots. Plant Pathol. 2015;64:638–47.

    Article  CAS  Google Scholar 

  47. Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoum H. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol. 2001;83:101–18.

    CAS  Google Scholar 

  48. Sadfi N, Cherif M, Hajlaoui MR, Boudabbous A. Biological control of the potato tubers dry rot caused by Fusarium roseum var. sambucinum under greenhouse, field and storage conditions using Bacillus spp. isolates. J Phytopathol. 2002;150:640–8.

    Article  Google Scholar 

  49. Sasaki A, Kanematsu S, Onoue M, Oyama Y, Yoshida K. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Arch Virol. 2006;151:697–707.

    Article  PubMed  CAS  Google Scholar 

  50. Schmitt MJ, Breinig F. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev. 2002;26:257–76.

    Article  PubMed  CAS  Google Scholar 

  51. Son M, Yu J, Kim KH. Five questions about mycoviruses. PLoS Pathog. 2015;11:e1005172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Stokstad E. Plant pathology. Deadly wheat fungus threatens world’s breadbaskets. Science. 2007;315:1786–7.

    Article  PubMed  CAS  Google Scholar 

  53. Supyani S, Widadi S. Hypovirulent isolates of Fusarium collected from chili crops in Boyolali Regency, Central Java, Indonesia. Agrivita. 2015;37:67–74.

    Article  Google Scholar 

  54. Vishwakarma SK, Kumar P, Nigam A, Singh A, Kumar A. PokkahBoeng: an emerging disease of sugarcane. J Plant Pathol Microbiol. 2013;4:170.

    Google Scholar 

  55. Wachowska U, Kucharska K, Jedryczka M, Lobik N. Microorganisms as biological control agents against Fusarium pathogens in winter wheat. Pol J Environ Stud. 2013;22:591–7.

    Google Scholar 

  56. Wang S, Kondo H, Liu L, Guo L, Qiu D. A novel virus in the family Hypoviridae from plant pathogenic fungus Fusarium graminearum. Virus Res. 2013;174:69–77.

    Article  PubMed  CAS  Google Scholar 

  57. Wang L, Zhang J, Zhang H, Qiu D, Guo L. Two novel relative double-stranded RNA mycoviruses infecting Fusarium poae strain SX63. Int J Mol Sci. 2016;17:641–53.

    Article  PubMed Central  CAS  Google Scholar 

  58. Yu J, Kwon SJ, Lee KM, Son M, Kim KH. Complete nucleotide sequence of double-stranded RNA viruses from Fusarium graminearum strain DK3. Arch Virol. 2009;154:1855–8.

    Article  PubMed  CAS  Google Scholar 

  59. Yu J, Lee KM, Son M, Kim KH. Molecular characterization of Fusarium graminearum virus 2 isolated from Fusarium graminearum strain 98-8-60. J Plant Pathol. 2011;27:285–90.

    Article  CAS  Google Scholar 

  60. Yu J, Lee KM, Son M, Kim KH. Effects of the deletion and overexpression of Fusarium graminearum gene FgHaI2 on host response to mycovirus Fusarium graminearum virus 1. Mol Plant Pathol. 2015;16:641–52.

    CAS  Google Scholar 

  61. Zhang H, Mallik A, Zeng RS. Control of panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum) role of plant volatiles. J Chem Ecol. 2013;39:243–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Hon’ble Vice Chancellor, Shoolini University of Biotechnology and Management Sciences for providing necessary facilities. We would also like to thank Department of Biotechnology (DBT), Govt. of India for providing financial support as research Grant No. BT/PR6464/GBD/27/430/2012. Authors would also like to acknowledge the help of Mr. Neeraj Pizar, Assistant Professor (English), Shoolini University for thorough language editing in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kulshrestha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Guleria, S., Singh, K. et al. Mycovirus associated hypovirulence, a potential method for biological control of Fusarium species. VirusDis. 29, 134–140 (2018). https://doi.org/10.1007/s13337-018-0438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-018-0438-4

Keywords

Navigation