Advertisement

VirusDisease

, Volume 30, Issue 1, pp 84–94 | Cite as

Minimal genomic variability in Merremia mosaic virus isolates endemic in Merremia spp and cultivated tomato in Puerto Rico

  • Ali M. Idris
  • M. A. Al-Saleh
  • A. M Zakri
  • J. K. BrownEmail author
Original Article

Abstract

Merremia mosaic virus (MerMV), a bipartite begomovirus, was identified for the first time as a pathogen of commercial tomato plantings. Infection of tomato by MerMV caused mild leaf curling and yellow foliar mosaic symptoms. Herein, the MerMV was identified in symptomatic Merremia quinquefolia and M. aegyptia (Convolvulaceae) plants exhibiting bright yellow or yellow-green foliar mosaic symptoms, respectively. The full-length begomoviral components were amplified from total DNA isolated from two wild species of Merremia and commercial tomato plants during 1991–1998. The DNA was subjected to rolling circle amplification, restriction digestion, and DNA sequencing. The resultant 19 and 26 apparently full-length DNA-A and DNA-B components were ~ 2557 and ~ 2492 bases, respectively. The 140-base common region was 97.9% identical between DNA-A and -B components, a predictive evidence for cognate DNA-A and -B components. Although the DNA-A components were highly conserved at 96–100%, the DNA-B components diverged at ~ 89 to 100%, respectively. The overall clonal genomic features strongly suggested that MerMV lineage has been under host-selection for some time, and only recently, has undergone a host-shift, putatively, from wild convolvulaceous species to tomato (Solanaceae). Phylogenetically, MerMV grouped with other bipartite begomoviruses indigenous to the Caribbean region, with MerMV DNA-A components forming three clusters, and the DNA-B components grouped in one clade. Both clades contained only one closet relative, an isolate of MerMV from Venezuela, MerMV-VE. Biolistic inoculation of M. quinquefolia and tomato seedlings with the DNA-A and -B components of PR68 and PR80 resulted in development of symptoms like those observed in naturally-infected species, respectively.

Keywords

Convolvulaceae Solanaceae Geminiviridae ssDNA Wild host species Whitefly-transmitted viruses 

Notes

Acknowledgement

This publication is dedicated to the memory of our esteemed colleague, collaborator, and friend Dr. Julio Bird-Pinero, University of Puerto Rico, Rio Piedras, who passed away June 29, 2012. His contributions span the discovery and characterization of the first begomoviruses studied from the Caribbean region, long before the establishment of the Begomovirus genus, development of the concept of ‘host races’ of Bemisia tabaci based on distinct phenotypic characteristics, including host range and begomovirus transmission, and his pioneering work into the etiology of sugarcane diseases in the Caribbean region, among many others.This project was funded by HATCH funds awarded to the University of Puerto Rico and/or the University of Arizona during 1998-present. This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award No. BIO2833.

Supplementary material

13337_2017_412_MOESM1_ESM.docx (135 kb)
Supplementary material 1 (DOCX 136 kb)

References

  1. 1.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRefGoogle Scholar
  2. 2.
    Ambrozevicius LP, Calegario RF, Fontes EP, Carvalho MG, Zerbini FM. Genetic diversity of begomovirus infecting tomato and associated weeds in Southeastern Brazil. Fitopatol Bras. 2002;27:372–7.CrossRefGoogle Scholar
  3. 3.
    Argüello-Astorga GR, Guevara-González RG, Herrera-Estrella LR, Rivera-Bustamante RF. Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology. 1994;1994(203):90–100.CrossRefGoogle Scholar
  4. 4.
    Baumann K, Idris AM, Bird J, Brown JK. Merremia mosaic virus is a begomovirus species originating from indigenous weeds in PR that is recently adapted to tomato. Phytopathology. 2005;2005(95):S7.Google Scholar
  5. 5.
    Bird J. A whitefly transmitted mosaic of Jatropha gossypifolia. Tech Pap Agric Exp Stn PR. 1957;22:35.Google Scholar
  6. 6.
    Bird J, Maramorosch K. Viruses and virus diseases associated with whiteflies. Adv. Vir. Res. 1987;22:55–110.CrossRefGoogle Scholar
  7. 7.
    Bird J, Sanchez RL, Julia FJ. Rugaceous whitefly-transmitted viruses in Puerto Rico. In: Bird J, Maramorosch K, editors. Tropical diseases of legumes. New York: Academic Press; 1975. p. 3–26.CrossRefGoogle Scholar
  8. 8.
    Bird J, Idris AM, Rogan D, Brown JK. Introduction of exotic Tomato yellow leaf curl virus-Israel in tomato Puerto Rico. Plant Dis. 2001;85:1028.CrossRefPubMedGoogle Scholar
  9. 9.
    Bisaro DM. Geminivirus DNA replication. In: De Pamphilis ML, editor. DNA replication in eukaryotic cells. Cold Spring Harbor: Cold Spring Harbor NY Laboratory Press; 1996. p. 833–54.Google Scholar
  10. 10.
    Briddon RW, Stanley J. Subviral agents associated with plant single-stranded DNA viruses. Virology. 2006;344:198–210.CrossRefPubMedGoogle Scholar
  11. 11.
    Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology. 2003;312:106–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Brown JK. Bemisia: phylogenetic biology of the Bemisia tabaci sibling species group. In: Stansly PA, Naranjo SE, editors. Bemisia: bionomics and management of a global pest. Dordrecht: Springer; 2010. p. 31–67.Google Scholar
  13. 13.
    Brown JK, Bird J. Whitefly-transmitted geminiviruses in the Americas and the Caribbean Basin: past and present. Plant Dis. 1992;76:220–5.CrossRefGoogle Scholar
  14. 14.
    Brown JK, Bird J. Introduction of an exotic whitefly (Bemisia) vector facilitates secondary spread of Jatropha mosaic virus, a geminivirus previously vectored exclusively by the Jatropha biotype. In: Gerling D, Mayer RT, editors. Bemisia’95: taxonomy, biology, damage, control and management. Wimborne: Intercept; 1996. p. 351–3.Google Scholar
  15. 15.
    Brown JK. The Bemisia tabaci complex: genetic and phenotypic variability drives begomovirus spread and virus diversification. Plant Dis. 2007. http://www.apsnet.org/online/feature/btabaci/.
  16. 16.
    Brown JK, Frohlich D, Rosell R. The sweetpotato/silverleaf whiteflies: biotypes of Bemisia tabaci (Genn.), or a species complex? Ann Rev Entomol. 1995;40:511–34.CrossRefGoogle Scholar
  17. 17.
    Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JCF, Briddon RW, Hernandez-Zepeda C, Idris AM, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol. 2015;160:1593–619.CrossRefPubMedGoogle Scholar
  18. 18.
    Costa HS, Brown JK. Variation in biological characteristics and in esterase patterns among populations of Bemisia tabaci (Genn.) and the association of one population with silverleaf symptom development. Entomol Exp Appl. 1991;61:211–9.CrossRefGoogle Scholar
  19. 19.
    da Silva SJ, Castillo-Urquiza GP, Hora Junior BT, Assuncao IP, Lima GS, Pio-Ribeiro G, Mizubuti ES, Zerbini FM. High genetic variability and recombination in a begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern. Br Arch Virol. 2011;156:2205–13.CrossRefGoogle Scholar
  20. 20.
    Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue focus (Madison). 1990;12:13–5.Google Scholar
  21. 21.
    Fauquet CM, Sawyer S, Idris AM, Brown JK. Phylogeny and evidence for high degree of recombination in tomato-infecting begomoviruses from the Old World. Phytopathology. 2005;95:549–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Fontes EPB, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem. 1994;269:8459–65.Google Scholar
  23. 23.
    Frischmuth T, Engel M, Lauster S, Jeske H. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted Sida-infecting bipartite geminiviruses in Central America. J Gen Virol. 1997;78:2675–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Garcia-Andres S, Monci F, Navas-Castillo J, Moriones E. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology. 2006;350:433–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Garcia-Andres S, Tomas DM, Sanchez-Campos S, Navas-Castillo J, Moriones E. Frequent occurrence of recombinants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology. 2007;365:210–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 2000;16:573–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Gill R, Brown JK. Systematics of Bemisia and Bemisia relatives: can molecular techniques solve the Bemisia tabaci complex conundrum—a Taxonomist’s viewpoint Chapter 1. In: Stansly PA, Naranjo SE, editors. Bemisia: bionomics and management of a global pest. Dordrecht: Springer; 2010. p. 5–29.Google Scholar
  28. 28.
    Graham AP, Martin DP, Roye ME. Molecular characterization and phylogeny of two begomoviruses infecting Malvastrum americanum in Jamaica: evidence of the contribution of inter-species recombination to the evolution of malvaceous weed-associated begomoviruses from the Northern Caribbean. Vir Genes. 2010;40:256–66.CrossRefGoogle Scholar
  29. 29.
    Greathead AH. Host plants. In: Cock MJW, editor. Bemisia tabaci—a literature survey. Silwood Park: CAB International Institute of Biological Control; 1986. p. 17–26.Google Scholar
  30. 30.
    Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. Geminiviruses-models for plant DNA replication transcription and cell cycle regulation. Curr Biol. 1999;18:71–106.Google Scholar
  31. 31.
    Harrison BD. Advances in geminivirus research. Annu Res Phytopathol. 1985;23:55–82.CrossRefGoogle Scholar
  32. 32.
    Harrison BD, Robinson DJ. Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annu Rev Phytopathol. 1999;37:369–98.CrossRefPubMedGoogle Scholar
  33. 33.
    Hernández-Zepeda C, Idris AM, Carnevali G, Brown JK, Moreno-Valenzuela OA. Molecular characterization and phylogenetic relationships of two new bipartite begomovirus infecting malvaceous plants in Yucatan Mexico. Vir Genes. 2007;35:369–77.CrossRefGoogle Scholar
  34. 34.
    Hill JE, Strandberg JO, Hiebert E, Lazarowitz SG. Asymmetric infectivity of pseudorecombinants of cabbage leaf curl virus and squash leaf curl virus: implications for bipartite geminivirus evolution and movement. Virology. 1998;250:283–92.CrossRefPubMedGoogle Scholar
  35. 35.
    Hosseinzadeh MR, Shamsbakhsh M, Kazempour Osalou S, Brown JK. Phylogenetic relationships recombination analysis and genetic variability among diverse variants of Tomato yellow leaf curl virus in Iran and the Arabian Peninsula: further support for a TYLCV-center of diversity. Arch Virol. 2014;158:485–97.CrossRefGoogle Scholar
  36. 36.
    Hou YM, Gilbertson RL. Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol. 1996;70:5430–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW. The hypersensitive response to tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by transcriptional activator protein. Mol Plant Microbe Interact. 2007;20:1581–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Idris AM, Brown JK. Sinaloa tomato leaf curl geminivirus: biological and molecular evidence for a new subgroup III virus. Phytopathology. 1998;88:648–57.CrossRefPubMedGoogle Scholar
  39. 39.
    Idris AM, Lee SH, Lewis EA, Bird J, Brown JK. Three tomato-infecting begomoviruses from Puerto Rico. Phytopathology. 1998;88:S42.CrossRefGoogle Scholar
  40. 40.
    Idris AM, Smith SE, Brown JK. Ingestion, transmission, and persistence of Chino del tomate virus (CdTV), a New World begomovirus, by Old and New World biotypes of the whitefly vector Bemisia tabaci. Ann Appl Biol. 2001;139:145–54.CrossRefGoogle Scholar
  41. 41.
    Idris AM, Hiebert E, Bird J, Brown JK. Two newly described begomoviruses of Macroptilium lathyroides and common bean. Phytopathology. 2003;93:774–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Idris AM, Bird J, Brown JK. Infectivity of Merremia mosaic virus clones: a bipartite begomovirus from Puerto Rico American Phytopathological Society-Caribbean Division Cartagena Colombia September. Phytopathology. 2007;97:S174.Google Scholar
  43. 43.
    Idris AM, Mills-Lujan K, Baumann K, Brown JK. Melon chlorotic leaf curl virus: characterization and differential reassortment with closest relatives reveals adaptive virulence in the SLCV clade and host shifting by the host-restricted BCaMV. J Virol. 2008;82:1959–67.CrossRefPubMedGoogle Scholar
  44. 44.
    Idris A, Al-Saleh M, Amer M, Abdalla O, Brown J. Introduction of Cotton leaf curl Gezira virus into the United Arab Emirates. Plant Dis. 2014;98:1593.CrossRefPubMedGoogle Scholar
  45. 45.
    Lazarowitz SG. Geminiviruses: genomes structure and gene function. Crit Rev Plant Sci. 1992;11:327–49.CrossRefGoogle Scholar
  46. 46.
    Martin DP, Posada D, Crandall KA, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retrovir. 2005;21:98–102.CrossRefPubMedGoogle Scholar
  47. 47.
    Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462–3.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McGRATH PF, Harrison BD. Transmission of tomato leaf curl geminiviruses by Bemisia tabaci: effects of virus isolate and vector biotype. Ann Appl Biol. 1995;126:307–16.CrossRefGoogle Scholar
  49. 49.
    McLaughlin PD, McLaughlin WA, Maxwell DP, Roye ME. Identification of begomoviruses infecting crops and weeds in Belize. Plant Virus. 2008;2:58–63.Google Scholar
  50. 50.
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL. Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol. 2013;87:5397–413.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Monci F, Sanchez-Campos S, Navas-Castillo J, Moriones E. A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology. 2002;303:317–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Muhire BM, Varsani A, Martin DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE. 2014;9:e108277.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Navas-Casillo J, Sanchez-Campos Diaz JA. Tomato yellow leaf curl virus-is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 1999;83:29–32.CrossRefGoogle Scholar
  54. 54.
    Navot N, Zeidan M, Pichersky E, Zamir D, Czosnek H. Use of the polymerase chain reaction to amplify tomato yellow leaf curl virus DNA from infected plants and viruliferous whiteflies. Phytopathology. 1992;82:1199–202.CrossRefGoogle Scholar
  55. 55.
    Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW, Fauquet CM. Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology. 2010;405:300–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Ooi K, Ohshita S, Ishii I, Yahara T. Molecular phylogeny of geminivirus infecting wild plants in Japan. J Plant Res. 1997;110:247–57.CrossRefGoogle Scholar
  57. 57.
    Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.CrossRefPubMedGoogle Scholar
  58. 58.
    Pita J, Fondong V, Sangare A, Otim-Nape G, Ogwal S, Fauquet C. Recombination pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol. 2001;82:655–65.CrossRefPubMedGoogle Scholar
  59. 59.
    Polston JE, Anderson PK. The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis. 1997;81:1358–69.CrossRefPubMedGoogle Scholar
  60. 60.
    Polston JE, Hiebert E, McGovern RJ, Stansly PA, Schuster DJ. Host range of tomato mottle virus, a new geminivirus infecting tomato in Florida. Plant Dis. 1993;77:1181–4.CrossRefGoogle Scholar
  61. 61.
    Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Nat Acad Sci. 2001;98:13757–62.CrossRefPubMedGoogle Scholar
  63. 63.
    Riley L, Dunal L. Identification of a natural weed host of tomato mottle geminivirus in Florida. Plant Dis. 1994;78:1102–6.CrossRefGoogle Scholar
  64. 64.
    Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol. 2005;243:361–94.CrossRefGoogle Scholar
  65. 65.
    Romay G, Geraud-Pouey F, Chirinos DT, Galindo-Castro I, Franco MA. Molecular variability of Merremia mosaic virus infecting tomatoes in Venezuela. Aust Plant Dis Notes. 2016;11:11.  https://doi.org/10.1007/s13314-016-0198-1.CrossRefGoogle Scholar
  66. 66.
    Rubinstein G, Czosnek H. Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity and fecundity. J Gen Virol. 1997;78:2683–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Sanchez-Campos S, Martinez-Ayala A, Marquez-Martin B, Aragon-Caballero L, Navas-Castillo J, Moriones E. Ful- filling Koch’s postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World. Virus Res. 2013;173:286–93.CrossRefPubMedGoogle Scholar
  68. 68.
    Sanz Al, Fraile A, Gallego JM, Malpica JM, Garcia-Arenal F. Genetic variability of natural populations of the cotton leaf curl geminivirus a single-stranded DNA virus. J Mol Evol. 1999;49:672–81.CrossRefPubMedGoogle Scholar
  69. 69.
    Saunders K, Salim N, Mali VR, Malathi VG, Briddon R, Markham PG, Stanley J. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology. 2002;293:63–74.CrossRefPubMedGoogle Scholar
  70. 70.
    Saunders K, Norman A, Gucciardo S, Stanley J. The DNA beta satellite component associated with Ageratum yellow vein disease encodes an essential pathogenicity protein (beta C1). Virology. 2004;324:37–47.CrossRefPubMedGoogle Scholar
  71. 71.
    Sawyer S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989;6:526–38.PubMedGoogle Scholar
  72. 72.
    Silva S, Castillo-Urquiza G, Hora-Júnior B, Assunção I, Lima G, Pio-Ribeiro G, Mizubuti E, Zerbini F. Species diversity phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in Northeastern. Brazil Plant Pathol. 2012;61:457–67.CrossRefGoogle Scholar
  73. 73.
    Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.PubMedGoogle Scholar
  74. 74.
    Swofford DL. “PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.” 2003.Google Scholar
  75. 75.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetic analysis using Maximum Likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Unseld S, Ringel M, Konrad A, Lauster S, Frischmuth T. Virus-specific adaptations for the production of a pseudorecombinant virus formed by two distinct bipartite geminiviruses from Central America. Virology. 2000;274:179–88.CrossRefPubMedGoogle Scholar
  77. 77.
    Varsani A, Martin DP, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Zerbini FM, Brown JK. Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Adv Virol. 2014;159:1873–82.Google Scholar
  78. 78.
    Wyatt SD, Brown JK. Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology. 1996;86:1288–93.CrossRefGoogle Scholar
  79. 79.
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, ICTV Report Consortium. ICTV virus taxonomy profile: geminiviridae. J Gen Virol. 2017;98:131–3.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhou X. Advances in understanding begomovirus satellites. Ann Rev Phytopathol. 2013;51:357–81.CrossRefGoogle Scholar

Copyright information

© Indian Virological Society 2018

Authors and Affiliations

  • Ali M. Idris
    • 1
  • M. A. Al-Saleh
    • 2
  • A. M Zakri
    • 2
  • J. K. Brown
    • 1
    Email author
  1. 1.School of Plant SciencesUniversity of ArizonaTucsonUSA
  2. 2.Plant Protection DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations