Skip to main content
Log in

Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

The low pathogenic avian influenza (LPAI) H9N2 subtype has become the most prevalent and widespread in many Asian and Middle Eastern countries. It causes an enzootic situation in commercial poultry and known as a potential facilitator virus that can be transmitted to human from birds. The neuraminidase (NA) gene plays an important role the release and spread of the virus from infected cells and throughout the bird. The complete nucleotide sequences of the NA gene of seven H9N2 viruses collected from apparent healthy chicken and quail flocks in Egypt during 2014–2015, were amplified and sequenced. The phylogenetic relationships were investigated and all viruses were belonging to the A/Q/HK/G1/97 strain (G1-like). There were no insertions or deletions or shortening in NA stalk regions when compared to Y280-lineage and the human H9N2 isolates. No obvious changes NA interactions with antiviral drugs. We found that the Egyptian H9N2 viruses have seven glycosylation sites like the most recorded H9N2 viruses in the country, except A/Q/Egypt/14864V/2014 virus which has only six. The NA has four amino acid substitutions distributed in different parts of the hemadsorbing site. The most characteristic substitutions in this site were S372A and W403R these substitutions were a distinctive feature resembling to human H9N2, H2N2 and H3N2 viruses but differs from the other avian influenza viruses. These Special features of surface glycoproteins of LPAI-H9N2 viruses refer to the tendency for enhanced introductions into humans and ensuring the importance of poultry in the transfer influenza viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aamir UB, Wernery U, Ilyushina N, Webster RG. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology. 2007;361:45–55.

    Article  CAS  PubMed  Google Scholar 

  2. Air GM, Laver WG, Webster RG. Mechanism of antigenic variation in an individual epitope on influenza virus N9 neuraminidase. J Virol. 1990;64:5797–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25:5637–44.

    Article  CAS  PubMed  Google Scholar 

  4. Arafa AS, Hagag NM, Yehia N, Zanaty AM, Naguib MM, Nasef SA. Effect of cocirculation of highly pathogenic avian influenza H5N1 subtype with low pathogenic H9N2 subtype on the spread of infections. Avian Dis. 2012;56:849–57.

    Article  PubMed  Google Scholar 

  5. Bahari P, Pourbakhsh SA, Shoushtari H, Bahmaninejad MA. Molecular characterization of H9N2 avian influenza viruses isolated from vaccinated broiler chickens in northeast Iran. Trop Anim Health Prod. 2015;47:1195–201.

    Article  PubMed  Google Scholar 

  6. Bantia S, Ghate AA, Ananth SL, Babu YS, Air GM, Walsh GM. Generation and characterization of a mutant of influenza A virus selected with the neuraminidase inhibitor BCX-140. Antimicrob Agents Chemother. 1998;42:801–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Biswas PK, Christensen JP, Ahmed S, Barua H, Das A, Rahman MH, et al. Avian influenza outbreaks in chickens, Bangladesh. Emerg Infect Dis. 2008;14:1909–12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 2010;328:1272–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, et al. Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci. 1989;323:511–8.

    Article  CAS  PubMed  Google Scholar 

  10. EMPRES (2015) Animal influenza update. Availabe online at http://empres-i.fao.org/empres-i/home. Accessed 13 Feb 2015

  11. Fereidouni SR, Harder TC, Gaidet N, Ziller M, Hoffmann B, Hammoumi S, et al. Saving resources: avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. J Virol Methods. 2012;186:119–25.

    Article  CAS  PubMed  Google Scholar 

  12. Fuller TL, Gilbert M, Martin V, Cappelle J, Hosseini P, Njabo KY, Abdel Aziz S, Xiao X, Daszak P, Smith TB. Predicting hotspots for influenza virus reassortment. Emerg Infect Dis. 2013;19(4):581–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fusaro A, Monne I, Salviato A, Valastro V, Schivo A, Amarin NM, et al. Phylogeography and evolutionary history of reassortant H9N2 viruses with potential human health implications. J Virol. 2011;85:8413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomaa MR, Kayed AS, Elabd MA, Zeid DA, Zaki SA, El Rifay AS, et al. Avian influenza A(H5N1) and A(H9N2) seroprevalence and risk factors for infection among Egyptians: a prospective, controlled seroepidemiological study. J Infect Dis 2015;211(9):1399–407.

    Article  PubMed  Google Scholar 

  15. Guan Y, Shortridge KF, Krauss S, Chin PS, Dyrting KC, Ellis TM, et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol. 2000;74:9372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gubareva LV, Robinson MJ, Bethell RC, Webster RG. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino-Neu5Ac2en. J Virol. 1997;71:3385–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gubareva LV, Kaiser L, Hayden FG. Influenza virus neuraminidase inhibitors. Lancet. 2000;355:827–35.

    Article  CAS  PubMed  Google Scholar 

  18. Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, et al. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology. 2000;267:279–88.

    Article  CAS  PubMed  Google Scholar 

  19. Haghighat-Jahromi M, Asasi K, Nili H, Dadras H, Shooshtari A. Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine. Arch Virol. 2008;153:651–5.

    Article  CAS  PubMed  Google Scholar 

  20. Hall T. BioEdit version 7.0. 0. Distributed by the author. www.mbio.ncsu.edu/BioEdit/bioedit.html. 2004.

  21. Hausmann J, Kretzschmar E, Garten W, Klenk H-D. N1 neuraminidase of influenza virus A/FPV/Rostock/34 has haemadsorbing activity. J Gen Virol. 1995;76:1719–28.

    Article  CAS  PubMed  Google Scholar 

  22. Homme P, Easterday B. Avian influenza virus infections. I. Characteristics of influenza A/Turkey/Wisconsin/1966 virus. Avian Dis. 1970;1:66–74.

    Article  Google Scholar 

  23. Hulse DJ, Webster RG, Russell RJ, Perez DR. Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol. 2004;78:9954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Infl WA, Manu U. WHO manual on animal influenza diagnosis and surveillance. Geneva: World Health Organization; 2002.

    Google Scholar 

  25. Jang J, Hong SH, Kim IH. Validation of a real-time RT-PCR method to quantify newcastle disease virus (NDV) titer and comparison with other quantifiable methods. J Microbiol Biotechnol. 2011;21:100–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kammon A, Heidari A, Dayhum A, Eldaghayes I, Sharif M, Monne I, et al. Characterization of avian influenza and newcastle disease viruses from poultry in Libya. Avian Dis. 2015;59:422–30.

    Article  PubMed  Google Scholar 

  27. Kandeil A, El-Shesheny R, Maatouq AM, Moatasim Y, Shehata MM, Bagato O, et al. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Arch Virol. 2014;159:2861–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan SU, Anderson BD, Heil GL, Liang S, Gray GC. A systematic review and meta-analysis of the seroprevalence of influenza A (H9N2) infection among humans. J Infect Dis. 2015;212:562–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kobasa D, Rodgers ME, Wells K, Kawaoka Y. Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks. J Virol. 1997;71:6706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee D-H, Song C-S. H9N2 avian influenza virus in Korea: evolution and vaccination. Clin Exp Vaccine Res. 2013;2:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol. 1999;73:1146–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74:8502–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281:156–62.

    Article  CAS  PubMed  Google Scholar 

  34. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol. 2000;74:6015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monne I, Ormelli S, Salviato A, De Battisti C, Bettini F, Salomoni A, et al. Development and validation of a one-step real-time PCR assay for simultaneous detection of subtype H5, H7, and H9 avian influenza viruses. J Clin Microbiol. 2008;46:1769–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monne I, Hussein HA, Fusaro A, Valastro V, Hamoud MM, Khalefa RA, et al. H9N2 influenza A virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza Other Respir Viruses. 2013;7:240–3.

    Article  CAS  PubMed  Google Scholar 

  37. Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005;353:1363–73.

    Article  CAS  PubMed  Google Scholar 

  38. Naguib MM, Arafa A-SA, El-Kady MF, Selim AA, Gunalan V, Maurer-Stroh S, et al. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt. Infect Genet Evol. 2015;34:278–91.

    Article  PubMed  Google Scholar 

  39. Organization WH. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Geneva: World Health Organization; 2014.

    Google Scholar 

  40. Peiris M, Yuen K, Leung C, Chan K, Ip P, Lai R, et al. Human infection with influenza H9N2. Lancet. 1999;354:916–7.

    Article  CAS  PubMed  Google Scholar 

  41. Pond SLK, Muse SV. HyPhy: hypothesis testing using phylogenies. In: Statistical methods in molecular evolution. New York: Springer; 2005. p. 125–81.

  42. Ramneek Mitchell NL, McFarlane RG. Rapid detection and characterisation of infectious bronchitis virus (IBV) from New Zealand using RT-PCR and sequence analysis. N Z Vet J. 2005;53:457–61.

    Article  CAS  PubMed  Google Scholar 

  43. Rashid S, Naeem K, Ahmed Z, Saddique N, Abbas M, Malik S. Multiplex polymerase chain reaction for the detection and differentiation of avian influenza viruses and other poultry respiratory pathogens. Poult Sci. 2009;88:2526–31.

    Article  CAS  PubMed  Google Scholar 

  44. Setiawaty V, Dharmayanti NL, Misriyah Pawestri HA, Azhar M, Tallis G, et al. Avian influenza A(H5N1) virus outbreak investigation: application of the FAO-OIE-WHO four-way linking framework in Indonesia. Zoonoses Publ Health. 2015;62:381–7.

    Article  CAS  Google Scholar 

  45. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tai CY, Escarpe PA, Sidwell RW, Williams MA, Lew W, Wu H, et al. Characterization of human influenza virus variants selected in vitro in the presence of the neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother. 1998;42:3234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varghese JN, Colman PM. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 Å resolution. J Mol Biol. 1991;221:473–86.

    Article  CAS  PubMed  Google Scholar 

  49. Varghese JN, Colman PM, van Donkelaar A, Blick TJ, Sahasrabudhe A, McKimm-Breschkin JL. Structural evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc Natl Acad Sci USA. 1997;94:11808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. von Itzstein M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 2007;6:967–74.

    Article  Google Scholar 

  51. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:152–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–94.

    Article  CAS  PubMed  Google Scholar 

  53. Wong SS, Yuen K-Y. Avian influenza virus infections in humans. Chest J. 2006;129:156–68.

    Article  Google Scholar 

  54. Xu KM, Li KS, Smith GJ, Li JW, Tai H, Zhang JX, et al. Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. J Virol. 2007;81:2635–45.

    Article  CAS  PubMed  Google Scholar 

  55. Yen H-L, McKimm-Breschkin J, Choy K-T, Wong D, Cheung P, Zhou J, et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio. 2013;4:e00396–13.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang K, Zhang Z, Yu Z, Li L, Cheng K, Wang T, et al. Domestic cats and dogs are susceptible to H9N2 avian influenza virus. Virus Res. 2013;175:52–7.

    Article  CAS  PubMed  Google Scholar 

  57. Zürcher T, Yates PJ, Daly J, Sahasrabudhe A, Walters M, Dash L, et al. Mutations conferring zanamivir resistance in human influenza virus N2 neuraminidases compromise virus fitness and are not stably maintained in vitro. J Antimicrob Chemother. 2006;58:723–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the entire gene analysis unit staff, National Laboratory for Quality Control on Poultry Production (NLQP), Animal Health Research Institute, Cairo, Egypt for their great help during the study. Special thanks to Drs. Abdelsatar Arafa, Amany Adel and Naglaa Hagag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zienab Mosaad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosaad, Z., Arafa, A., Hussein, H.A. et al. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt. VirusDis. 28, 164–173 (2017). https://doi.org/10.1007/s13337-017-0367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-017-0367-7

Keywords

Navigation