, Volume 27, Issue 1, pp 63–76 | Cite as

Circulating levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases during Japanese encephalitis virus infection

  • Vibha Shukla
  • Akhalesh Kumar Shakya
  • Mukti Shukla
  • Niraj Kumari
  • Narendra Krishnani
  • T. N. DholeEmail author
  • Usha Kant Misra
Original Article


Matrix metalloproteinases (MMPs) are widely implicated in modulating blood brain barrier (BBB) integrity and affect the entry of peripheral immune cells into the central nervous system (CNS). The expression of MMPs is tightly regulated at the level of gene transcription, conversion of pro-enzyme to active MMPs and by the action of tissue inhibitors of metalloproteinases (TIMP). The crucial role of MMPs in inflammation indicates that perturbation of the MMP/TIMP balance decisively plays an important role in pathogenesis during viral encephalitis. The study was performed to evaluate the production of MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-3 in the sera of JEV i.e. GP 78668A (GP-78) infected BALB/c mouse model of encephalitis and gel zymography was performed for MMP-2 and MMP-9 activities. The estimation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-3 in JEV-infected mouse serum was analyzed by ELISA along with brain histopathology and immunohistochemistry. Evan’s blue dye exclusion test was done to check the BBB integrity. Gelatin gel zymography was performed for MMP-2 and MMP-9 activities. We noticed an upregulated expression of MMPs in the sera of virus infected groups compared to controls at different days post inoculation (dpi). Post hoc analysis between days also reveals significant increase (p < 0.05) in virus infected groups with disease progression. In contrast, TIMPs expressions were significantly (p < 0.005) down regulated in the virus infected group. We provide preliminary evidence for a pattern of TIMP response in JEV infection distinct from that seen in acute inflammatory CNS conditions in JE, shown in our previous findings. Increased MMP-2 and MMP-9 activities were also found in a virus infected group with disease progression and are consistent with our previous finding of MMP-2 and MMP-9 activities in the CNS which clearly demonstrate worsen role of these immune mediators in JEV infection. This study will help to identify new targets for the therapeutic treatment of inflammatory mediated CNS disorders in JEV infection and may lead to the development of potential pharmacological targets in future.


Japanese encephalitis Blood brain barrier Matrix metalloproteinases Tissue inhibitors of metalloproteinases Neuropathogenesis Inflammation 



We thank Dr. Sudhanshu Vrati from National Institute of Immunology, New Delhi, for providing the Japanese encephalitis virus strain GP-78 and PS cell line. We thank Dr. S. K. Mandal for his assistance with statistical analysis. This work was supported by a grant (No Immuno/18/11/13/2008-ECD-I) from the Indian Council of Medical Research, New Delhi, India.


  1. 1.
    Afonso PV, Ozden S, Prevost MC, Schmitt C, Seilhean D, Weksler B, et al. Human blood-brain barrier disruption by retroviral-infected lymphocytes: role of myosin light chain kinase in endothelial tight-junction disorganization. J Immunol. 2007;179(4):2576–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Balakrishnan A, Mishra AC. Immune response during acute Chandipura viral infection in experimentally infected susceptible mice. Virol J. 2008;5(1):121.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Basu A, Krady JK, Enterline JR, Levison SW. Transforming growth factor beta1 prevents IL-1beta-induced microglial activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia. 2002;40(1):109–20. doi: 10.1002/glia.10118.CrossRefPubMedGoogle Scholar
  4. 4.
    Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res. 1993;28(6):500–10.CrossRefPubMedGoogle Scholar
  5. 5.
    Biswas S, Kar S, Singh R, Chakraborty D, Vipat V, Raut C, et al. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol. 2010;82(2):304–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, et al. Insights into MMP-TIMP Interactions. Ann N Y Acad Sci. 1999;878(1):73–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Boven LA, Middel J, Verhoef J, De Groot CJ, Nottet HS. Monocyte infiltration is highly associated with loss of the tight junction protein zonula occludens in HIV-1-associated dementia. Neuropathol Appl Neurobiol. 2000;26(4):356–60.CrossRefPubMedGoogle Scholar
  8. 8.
    Buhler L, Samara R, Guzman E, Wilson C, Krizanac-Bengez L, Janigro D, et al. Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis. BMC Neurosci. 2009;10(1):17.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 1997;91(7):917–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Cosby SL, Brankin B. Measles virus infection of cerebral endothelial cells and effect on their adhesive properties. Vet Microbiol. 1995;44(2–4):135–9. doi: 10.4049/jimmunol.179.4.2576 CrossRefPubMedGoogle Scholar
  11. 11.
    Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155(6):1915–27. doi: 10.1046/j.1365-2990.2000.00255.x.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174(5):1209–20.CrossRefGoogle Scholar
  13. 13.
    Ethell IM, Ethell DW. Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J Neurosci Res. 2007;85(13):2813–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghosh D, Basu A. Japanese encephalitis—a pathological and clinical perspective. PLoS Negl Trop Dis. 2009;3(9):e437.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111.PubMedGoogle Scholar
  16. 16.
    Gralinski LE, Ashley SL, Dixon SD, Spindler KR. Mouse adenovirus type 1-induced breakdown of the blood–brain barrier. J Virol. 2009;83(18):9398–410. doi: 10.1128/JVI.00954-09.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297(5584):1186–90. doi: 10.1126/science.1073634.CrossRefPubMedGoogle Scholar
  18. 18.
    Hadass O, Tomlinson BN, Gooyit M, Chen S, Purdy JJ, Walker JM, et al. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One. 2013;8(10):e76904. doi: 10.1016/S0092-8674(00)80483-3.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hsieh HL, Yen MH, Jou MJ, Yang CM. Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal. 2004;16(10):1163–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001;24(12):719–25. doi: 10.1016/S0166-2236(00)02004-X
  21. 21.
    Ju SM, Song HY, Lee JA, Lee SJ, Choi SY, Park J. Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-κB dependent pathway in human astrocytes. Exp Mol Med. 2009;41(2):86.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Kieseier BC, Clements JM, Pischel HB, Wells GMA, Miller K, Gearing AJH, et al. Matrix metalloproteinases MMP-9 and MMP-7 are expressed in experimental autoimmune neuritis and the guillain-barr syndrome. Ann Neurol. 1998;43(4):427–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Investig. 1995;96(5):2304.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Leppert D, Leib SL, Grygar C, Miller KM, Schaad UB, Hollander GA. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: association with blood-brain barrier damage and neurological sequelae. Clin Infect Dis. 2000;31(1):80–4. doi: 10.1086/313922.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu KJ, Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med. 2005;39(1):71–80. doi: 10.1016/j.freeradbiomed.2005.03.033.CrossRefGoogle Scholar
  26. 26.
    McGavern DB, Homann D, Oldstone M. T cells in the central nervous system: the delicate balance between viral clearance and disease. J Infect Dis. 2002;186(Supplement 2):S145.CrossRefPubMedGoogle Scholar
  27. 27.
    Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, Carlson E, et al. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg. 1996;85(5):885–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Mishra MK, Dutta K, Saheb SK, Basu A. Understanding the molecular mechanism of blood-brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int. 2009;55(8):717–23. doi: 10.1016/j.neuint.2009.07.006.CrossRefPubMedGoogle Scholar
  29. 29.
    Mishra MK, Dutta K, Saheb SK, Basu A. Understanding the molecular mechanism of blood-brain barrier damage in an experimental model of Japanese encephalitis: correlation with minocycline administration as a therapeutic agent. Neurochem Int. 2009;55(8):717–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Missé D, Esteve PO, Renneboog B, Vidal M, Cerutti M, St Pierre Y, et al. HIV-1 glycoprotein 120 induces the MMP-9 cytopathogenic factor production that is abolished by inhibition of the p38 mitogen-activated protein kinase signaling pathway. Blood. 2001;98(3):541–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, et al. Increased blood–brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol. 2008;89(Pt 2):467–73. doi: 10.1099/vir.0.83345-0.CrossRefPubMedGoogle Scholar
  32. 32.
    Myint KS, Kipar A, Jarman RG, Gibbons RV, Perng GC, Flanagan B, et al. Neuropathogenesis of Japanese encephalitis in a primate model. PLoS Negl Trop Dis. 2014;8(8):e2980. doi: 10.1371/journal.pntd.0002980.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. 2002;22(17):7526–35.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem. 1989;264(3):1860.PubMedGoogle Scholar
  35. 35.
    Tsai HC, Shi MH, Lee SS, Wann SR, Tai MH, Chen YS. Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with meningitis. Clin Microbiol Infect. 2011;17(5):780–4. doi: 10.1111/j.1469-0691.2010.03393.x.
  36. 36.
    Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol. 2003;62(6):593.CrossRefPubMedGoogle Scholar
  37. 37.
    Paemen L, Olsson T, Söderström M, Damme J, Opdenakker G. Evaluation of gelatinases and IL-6 in the cerebrospinal fluid of patients with optic neuritis, multiple sclerosis and other inflammatory neurological diseases. Eur J Neurol. 1994;1(1):55–63.CrossRefPubMedGoogle Scholar
  38. 38.
    Paul S, Ricour C, Sommereyns C, Sorgeloos F, Michiels T. Type I interferon response in the central nervous system. Biochimie. 2007;89(6–7):770–8. doi: 10.1016/j.biochi.2007.02.009.CrossRefPubMedGoogle Scholar
  39. 39.
    Robinson SC, Scott KA, Balkwill FR. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-α. Eur J Immunol. 2002;32(2):404–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Rosenberg GA. Matrix metalloproteinases in brain injury. J Neurotrauma. 1995;12(5):833–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. 2002;39(3):279–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Rosenberg GA, Kornfeld M, Estrada E, Kelley RO, Liotta LA, Stetler-Stevenson WG. TIMP-2 reduces proteolytic opening of blood–brain barrier by type IV collagenase. Brain Res. 1992;576(2):203–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Saxena V, Mishra VK, Dhole TN. Evaluation of reverse-transcriptase PCR as a diagnostic tool to confirm Japanese encephalitis virus infection. Trans R Soc Trop Med Hyg. 2009;103(4):403–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Schafer A, Brooke CB, Whitmore AC, Johnston RE. The role of the blood–brain barrier during Venezuelan equine encephalitis virus infection. J Virol. 2011;85(20):10682–90. doi: 10.1128/JVI.05032-11.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Shimizu K, Libby P, Mitchell RN. Local cytokine environments drive aneurysm formation in allografted aortas. Trends Cardiovasc Med. 2005;15(4):142–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Shukla V, Kumar Shakya A, Dhole T, Misra UK. Upregulated expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in BALB/c mouse brain challenged with Japanese encephalitis virus. Neuroimmunomodulation. 2012;19(4):241–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Shukla V, Shakya AK, Dhole TN, Misra UK. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of children with Japanese encephalitis virus infection. Arch Virol. 2013;158(12):2561–75. doi: 10.1007/s00705-013-1783-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Silacci P, Dayer JM, Desgeorges A, Peter R, Manueddu C, Guerne PA. Interleukin (IL)-6 and its soluble receptor induce TIMP-1 expression in synoviocytes and chondrocytes, and block IL-1-induced collagenolytic activity. J Biol Chem. 1998;273(22):13625.CrossRefPubMedGoogle Scholar
  49. 49.
    Solomon T, Dung NM, Kneen R, Nisalak A, Vaughn DW, Farrar J, et al. Rapid diagnosis of Japanese encephalitis by using an immunoglobulin M dot enzyme immunoassay. J Clin Microbiol. 1998;36(7):2030–4.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Solorzano CC, Ksontini R, Pruitt JH, Auffenberg T, Tannahill C, Galardy RE, et al. A matrix metalloproteinase inhibitor prevents processing of tumor necrosis factor [alpha](TNF [alpha]) and abrogates endotoxin-induced lethality. Shock. 1997;7(6):427.CrossRefPubMedGoogle Scholar
  51. 51.
    Tsai HC, Shi MH, Lee SSJ, Wann SR, Tai MH, Chen YS. Expression of matrix metalloproteinases and their tissue inhibitors in the serum and cerebrospinal fluid of patients with meningitis. Clin Microbiol Infect. 2011.Google Scholar
  52. 52.
    Tsai HC, Liu SF, Wu KS, Liu YC, Shi MH, Chen ER, et al. Dynamic changes of matrix metalloproteinase-9 in patients with Klebsiella pneumoniae meningitis. Inflammation. 2008;31(4):247–53.CrossRefPubMedGoogle Scholar
  53. 53.
    Tsai HC, Chung LY, Chen ER, Liu YC, Lee SSJ, Chen YS, et al. Association of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinase-4 in cerebrospinal fluid with blood–brain barrier dysfunction in patients with eosinophilic meningitis caused by Angiostrongylus cantonensis. Am J Trop Med Hyg. 2008;78(1):20–7.PubMedGoogle Scholar
  54. 54.
    Tung WH, Tsai HW, Lee I, Hsieh HL, Chen WJ, Chen YL, et al. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. Br J Pharmacol. 2010;161(7):1566–83.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Von Bredow DC, Cress AE, Howard EW, Bowden GT, Nagle RB. Activation of gelatinase-tissue-inhibitors-of-metalloproteinase complexes by matrilysin. Biochem J. 1998;331(Pt 3):965.CrossRefGoogle Scholar
  56. 56.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–73. doi: 10.1038/nm1140.CrossRefPubMedGoogle Scholar
  57. 57.
    Wu CY, Hsieh HL, Jou MJ, Yang CM. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem. 2004;90(6):1477–88.CrossRefPubMedGoogle Scholar
  58. 58.
    Yang CM, Lin CC, Lee IT, Lin YH, Chen WJ, Jou MJ, et al. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes. J Neuroinflammation. 2012;9(1):12.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11.CrossRefPubMedGoogle Scholar
  60. 60.
    Yu F, Kamada H, Niizuma K, Endo H, Chan PH. Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma. 2008;25(3):184–95. doi: 10.1089/neu.2007.0438.PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist. 2010;16(2):156–70. doi: 10.1177/1073858409355830.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Indian Virological Society 2016

Authors and Affiliations

  • Vibha Shukla
    • 1
  • Akhalesh Kumar Shakya
    • 1
  • Mukti Shukla
    • 1
  • Niraj Kumari
    • 2
  • Narendra Krishnani
    • 2
  • T. N. Dhole
    • 1
    Email author
  • Usha Kant Misra
    • 3
  1. 1.Department of MicrobiologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
  2. 2.Department of PathologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia
  3. 3.Department of NeurologySanjay Gandhi Post Graduate Institute of Medical SciencesLucknowIndia

Personalised recommendations