Advertisement

VirusDisease

, Volume 27, Issue 1, pp 1–11 | Cite as

Viral glycoproteins: biological role and application in diagnosis

  • Nilotpal Banerjee
  • Sumi MukhopadhyayEmail author
Review Article

Abstract

The viruses that infect humans cause a huge global disease burden and produce immense challenge towards healthcare system. Glycoproteins are one of the major components of human pathogenic viruses. They have been demonstrated to have important role(s) in infection and immunity. Concomitantly high titres of antibodies against these antigenic viral glycoproteins have paved the way for development of novel diagnostics. Availability of appropriate biomarkers is necessary for advance diagnosis of infectious diseases especially in case of outbreaks. As human mobilization has increased manifold nowadays, dissemination of infectious agents became quicker that paves the need of rapid diagnostic system. In case of viral infection it is an emergency as virus spreads and mutates very fast. This review encircles the vast arena of viral glycoproteins, their importance in health and disease and their diagnostic applications.

Keywords

Viral glycoprotein Immunodiagnostics Biomarker Viral pathogenesis 

Notes

Acknowledgments

Mr. Nilotpal Banerjee is a recipient of Junior Research Fellowship from Department of Biotechnology [File No. 232/BT(Estt.)/RD-24/2014], Government of West Bengal, India.

References

  1. 1.
    About HIV/AIDS, HIV BASICS, CDC. http://www.cdc.gov/hiv/basics/whatishiv.html. Accessed on 1st June 2015.
  2. 2.
    Adams EW, Ratner DM, Bokesch HR, McMahon JB, O’Keefe BR, Seeberger PH. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem Biol. 2004;11(6):875–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Alonso WJ, Laranjeira BJ, Pereira SAR, Florencio CMGD, Moreno EC, Miller MA, Gigilo R, Schuch-Paim C, Moura FEA. Comparative dynamics, morbidity and mortality burden of pediatric viral respiratory infections in an equatorial city. Pediatr Infect Dis J. 2012;31:e9–14. doi: 10.1097/INF.0b013e31823883be.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Amat-ur-Rasool H, Saghir A, Idrees M. Computational prediction and analysis of envelop glycoprotein epitopes of DENV-2 and DENV-3 Pakistani isolates: a first step towards dengue vaccine development. Samuel JE, ed. PLoS One. 2015;10: e0119854.Google Scholar
  5. 5.
    Amon R, Reuven EM, Ben-Arye SL, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res. 2014;7(389):115–22.CrossRefGoogle Scholar
  6. 6.
    Antipenko A, Himanen JP, van Leyen K, Nardi-Dei V, Lesniak J, Barton WA, Rajashankar KR, Lu M, Hoemme C, Puschel AW, Nikolov DB. Structure of the semaphorin-3A receptor binding module. Neuron. 2003;39:589–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Barrientos LG, Martin AM, Pierre W, Rollin E. Secreted glycoprotein from live zaire ebolavirus—infected cultures: preparation, structural and biophysical characterization, and thermodynamic stability. J Infect Dis. 2007;196(Supplement 2):S220–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Baumgarten A. Viral immunodiagnosis. Yale J Biol Med. 1980;53(1):71–83.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Biernat B, Stańczak J, Szostakowska B, Wroczyńska A, Kuna A, Nahorski WL, Racewicz M. Different serotypes of dengue virus (DENV) imported by Polish travellers from dengue endemic areas to Poland. Int Marit Health. 2015;66:72–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Bowden TA, Jones EY, Stuart DI. Cells under siege: viral glycoprotein interactions at the cell surface. J Struct Biol. 2011;175:120–6.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Byungki C, Jeon BY, Kim J, Noh J, Kim J, Park M, Park S. Expression and evaluation of Chikungunya virus E1 and E2 envelope proteins for serodiagnosis of Chikungunya virus infection. Yonsei Med J. 2008;49:828–35.CrossRefGoogle Scholar
  12. 12.
    Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36:211–27.PubMedGoogle Scholar
  13. 13.
    CDC (2000), MMWR, Interpretation and Use of the Western Blot Assay for Serodiagnosis of Human Immunodeficiency Virus Type 1 Infections, http://www.cdc.gov/mmwr/preview/mmwrhtml/00001431.htm.
  14. 14.
    Chen J, Wang L, Chen JJ, Sahu GK, Tyring S, Ramsey K, Indrikovs AJ, Petersen JR, Paar D, Cloyd MW. Detection of antibodies to human immunodeficiency virus (HIV) that recognize conformational epitopes of glycoproteins 160 and 41 often allows for early diagnosis of HIV infection. J Infect Dis. 2002;186:321–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Chikungunya Virus, Centers for disease control and prevention. http://www.cdc.gov/chikungunya/.
  16. 16.
    Chirmule N, Pahwa S. Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions. Microbiol Rev. 1996;60:386–406.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Cifuentes-Muñoz N, Salazar-Quiroz N, Tischler ND. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses. 2014;6:1801–22.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Collins JK, Knight CA. Purification of the influenza hemagglutinin glycoprotein and characterization of its carbohydrate components. J Virol. 1978;26:457–67.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Comeau MR, Johnson R, DuBose RF, Petersen M, Gearing P, VandenBos T, Park L, Farrah T, Buller RM, Cohen JI, Strockbine LD, Rauch C, Spriggs MK. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor. VESPR. Immunity. 1998;8:473–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Das R. Ebola to have a global burden of $5.9 Billion By End Of 2016, Forbes, Pharma & Healthcare, Nov 12, 2014 @ 03:14 PM. http://www.forbes.com/sites/reenitadas/2014/11/12/ebola-to-have-a-global-burden-of-5-9-billion-by-end-of-2016/. Accessed on 1st June 2015.
  21. 21.
  22. 22.
    De Haan CAM, Vennema H, Rottier PJM. Assembly of the coronavirus envelope: homotypic Interactions between the M proteins. J Virol. 2000;74:4967–78.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva: World Health Organization; 2009. 4, Laboratory diagnosis and diagnostic tests. Available from: http://www.ncbi.nlm.nih.gov/books/NBK143156/.
  24. 24.
    Dolnik O, Volchkova VA, Escudero-Perez B, Lawrence P, Klenk HD, Volchkov VE. Shedding of Ebola virus surface glycoprotein is a mechanism of self-regulation of cellular cytotoxicity and has a direct effect on virus infectivity. J Infect Dis. 2015;212(suppl_2):S322–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Dong PH, Kima HG, Kima Y, Poonb LLM, Cho MW. Development of a safe neutralization assay for SARS-CoV and characterization of S-glycoprotein. Virology. 2004;326:140–9.CrossRefGoogle Scholar
  26. 26.
    Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD. Biosynthesis and role of filoviral glycoproteins. J Gen Virol. 2001;82:2839–48.CrossRefPubMedGoogle Scholar
  27. 27.
    Fenouillet E, Jones IM. The glycosylation of human immunodeficiency virus type 1 transmembrane glycoprotein (gp41) is important for the efficient intracellular transport of the envelope precursor gp160. J Gen Virol. 1995;76:1509–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V. Dengue virus type 1 nonstructural glycoprotein ns1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol. 1999;73(7):6104–10.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Fujiyoshi M, Kuno A, Gotoh M, Fukai M, Yokoo H, Kamachi H, Kamiyama T, Korenaga M, Mizokami M, Narimatsu H, Taketomi A. Clinicopathological characteristics and diagnostic performance of Wisteria floribunda agglutinin positive Mac-2-binding protein as a preoperative serum marker of liver fibrosis in hepatocellular carcinoma. J Gastroenterol. 2015;50(11):1134–44.Google Scholar
  30. 30.
    Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem. 2010;285:28403–9.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Gelanew T, Poole-Smith BK, Hunsperger E. Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods. 2015;222:214–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Gelderblom HR. Structure and classification of viruses. In: Baron S, editor. Medical microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 41.Google Scholar
  33. 33.
    Ghosh A, Dar L. Dengue vaccines: challenges, development, current status and prospects. Indian J Med Microbiol. 2015;33:3–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Giller HR, Stanley W, Charles G. Cellular and humoral immunity to varicella zoster virus glycoproteins in immune and susceptible human subjects. J Infect Dis. 1989;160(6):919–28.CrossRefPubMedGoogle Scholar
  35. 35.
    Gubler DJ. Human arbovirus infections worldwide. Ann N Y Acad Sci. 2001;951:13–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Gurugama P, Garg P, Perera J, Wijewickrama A, Seneviratne SL. Dengue viral infections. Indian J Dermatol. 2010;55:68–78.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Hamborsky J, Kroger A, Wolfe C. Influenza, epidemiology and prevention of vaccine-preventable diseases. In: The Pink Book: course textbook. 13th ed. (2015), Centers for Disease Control and Prevention, April 2015. http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/flu.pdf.
  38. 38.
    Hansen JE. Carbohydrates of human immunodeficiency virus. APMIS Suppl. 1992;27:96–108.PubMedGoogle Scholar
  39. 39.
    Harvey David J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom Rev. 2012;31(2):183–311.CrossRefPubMedGoogle Scholar
  40. 40.
    Heimburg-Molinaro J, Tappert M, Song X, Lasanajak Y, Air G, Smith DF, Cummings RD. Probing virus-glycan interactions using glycan microarrays. Methods Mol Biol. 2012;808:251–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Her Z, Kam YW, Lin RT, Ng LF. Chikungunya: a bending reality. Microbes Infect. 2009;11:1165–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Hermann LL, Thaisomboonsuk B, Poolpanichupatam Y. Evaluation of a dengue NS1 antigen detection assay sensitivity and specificity for the diagnosis of acute dengue virus infection. Harris E, ed. PLoS Negl Trop Dis. 2014;8:e3193.Google Scholar
  43. 43.
    Hidari KIPJ, Suzuki T. Glycan receptor for influenza virus. Open Antimicrob Agents J. 2010;2:26–33.CrossRefGoogle Scholar
  44. 44.
    Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the japanese encephalitis virus serocomplex. J Biomed Biotechnol. 2012;2012:15, Article ID 379738.Google Scholar
  45. 45.
    Hoz JM, Bayona B, Viloria S, Accini JL, Juan-Vergara HS, Viasus D. Fatal cases of Chikungunya virus infection in Colombia: diagnostic and treatment challenges. J Clin Virol. 2015;69:27–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Hussain M, Idrees M, Afzal S. Development of global consensus of dengue virus envelope glycoprotein for epitopes based vaccine design. Curr Comput Aided Drug Des. 2015;11:84–97.CrossRefPubMedGoogle Scholar
  47. 47.
    Influenza Symptoms and the Role of Laboratory Diagnostics, Health Professionals, Seasonal. Laboratory diagnostic procedures for testing for influenza (flu)—CDC, http://www.cdc.gov/flu/professionals/diagnosis/labrolesprocedures.htm. Accessed on 1st June 2015.
  48. 48.
    Institute of Medicine (US) Forum on Microbial Threats. Microbial evolution and co-adaptation: A tribute to the life and scientific legacies of joshua lederberg: workshop summary. Washington (DC): National Academies Press (US); 2009. 5, Infectious disease emergence: past, present, and future. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45714/.
  49. 49.
    Jain A, Shah AN, Patel P, Desai M, Somani S, Parikh P, Singhal R, Joshi D. A clinico-hematological profile of dengue outbreak among healthcare Professionals in a tertiary care hospital of Ahmedabad with analysis on economic impact. Nat J Comm Med. 2013;4:286–90.Google Scholar
  50. 50.
    Janssen BJ, Robinson RA, Perez-Branguli F, Bell CH, Mitchell KJ, Siebold C, Jones EY. Structural basis of semaphorin-plexin signalling. Nature. 2010;467:1118–22.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Kam Y-W, Lee WWL, Simarmata D. unique epitopes recognized by antibodies induced in Chikungunya virus-infected non-human primates: implications for the study of immunopathology and vaccine development. Lu S, ed. PLoS One. 2014; 9(4):e95647.Google Scholar
  52. 52.
    Kamata T, Natesan M, Warfield K, Aman MJ, Ulrich RG. Determination of specific antibody responses to the six species of ebola and marburg viruses by multiplexed protein microarrays. Clin Vaccine Immunol. 2014;21:1605–12.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Kamena F, Tamborrini M, Liu X, Kwon Y, Thompson F. Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol. 2008;4:238–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Komarova AV, Combredet C, Meyniel-Schicklin L, Chapelle M, Caignard G, Camadro J-M, Lotteau V, Vidalain P-O, Tangy F. Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses. Mol Cell Proteomics. 2011;10(12):M110.007443.Google Scholar
  55. 55.
    Kong L, Kadam RU, Giang E, Ruwona TB, Nieusma T, Culhane JC, Stanfield RL, Dawson PE, Wilson IA, Law M. Structure of hepatitis C virus envelope glycoprotein E1 antigenic site 314–324 in complex with antibody IGH526. J Mol Biol. 2015;427(16):2617–28.Google Scholar
  56. 56.
    Kroschewski H, Sagripanti J, Davidson A. Identification of amino acids in the dengue virus type 2 envelope glycoprotein critical to virus infectivity. J Gen Virol. 2009;90:2457–61.Google Scholar
  57. 57.
    Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol. 2005;6:789–800.CrossRefPubMedGoogle Scholar
  58. 58.
    Kuhn RJ, Zhang W, Rossmann MG. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108:717–25.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Lagging LM, Meyer K, Owens RJ, Ray R. Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol. 1998;72:3539–46.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Lange JMA, Coutinho RA, Krone WJA. Distinct IgG recognition patterns during progression of subclinical and clinical infection with lymphadenopathy associated virus/human T lymphotropic virus. Brit Med J. 1986;292:228–30.CrossRefGoogle Scholar
  61. 61.
    Lavie M, Goffard A, Dubuisson J. HCV glycoproteins: assembly of a functional E1–E2 Heterodimer. In: Tan SL, editor. Hepatitis C viruses: genomes and molecular biology. Norfolk (UK): Horizon Bioscience; 2006. Chapter 4.Google Scholar
  62. 62.
    Lee N, Lui GCY, Wong KT, Li TCM, Tse ECM, Chan JYC, Yu J, Wong SSM, Choi KW, Wong RYK, Ngai KLK, Hui DSC, Chan PKS. High morbidity and mortality in adults hospitalized for respiratory syncytial virus infections. Clin Infect Dis. 2013;57:1069–77.CrossRefPubMedGoogle Scholar
  63. 63.
    Leroy EM. Diagnosis of Ebola haemorrhagic fever by RT-PCR in an epidemic setting. J Med Virol. 2000;60:463–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Lin G, Simmons G, Pöhlmann S, et al. Differential N-linked glycosylation of human immunodeficiency virus and ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol. 2003;77(2):1337–46.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Liu H, Juo ZS, Shim AH, Focia PJ, Chen X, Garcia KC, He X. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell. 2010;142:749–61.PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Liu Y, Sheng J, Fokine A, et al. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science (New York, NY). 2015;347(6217):71–4.CrossRefGoogle Scholar
  67. 67.
    Lo M, Ng EK. Molecular diagnosis of severe acute respiratory syndrome. Methods Mol Biol. 2006;336:163–75.PubMedGoogle Scholar
  68. 68.
    Loughlin J, Poulios N, Napalkov P, Wegmüller Y, Monto AS. A study of influenza and influenza-related complications among children in a large US health insurance plan database. Pharmacoeconomics. 2003;21:273–83.CrossRefPubMedGoogle Scholar
  69. 69.
    Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol. 2003;10:843–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Mahony JB, Richardson S. Molecular diagnosis of severe acute respiratory syndrome. JMD. 2005;7:551–9.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Malaspina A, Collins BS, Dell A, Alter G, Onami TM. Conference report: “functional glycomics in HIV type 1 vaccine design” workshop report, Bethesda, Maryland, April 30–May 1, 2012. AIDS Res Hum Retroviruses. 2013;29(11):1407–17. doi: 10.1089/aid.2013.0102.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Masalova OV, Klimova RR. Development of monoclonal antibodies to highly pathogenic avian influenza H5N1 virus and their application to diagnostics, prophylaxis, and therapy. Acta Virol. 2011;55:3–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Mathys L, Balzarini J. Several N-glycans on the HIV envelope glycoprotein gp120 preferentially locate near disulphide bridges and are required for efficient infectivity and virus transmission. Paxton WA, ed. PLoS One. 2015;10:e0130621.Google Scholar
  74. 74.
    McDougal JS, Kennedy MS, Nicholson JKA. Antibody response to human immunodeficiency virus in homosexual men: relation of antibody specificity, titer, and isotype to clinical status, severity of immunodeficiency and disease progression. J Clin Invest. 1987;80:316–24.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Mirazimi A. Ebola virus disease: societal challenges and new treatments. J Intern Med. 2015;278:227–37.CrossRefPubMedGoogle Scholar
  76. 76.
    Mushahwar IK. Human immunodeficiency viruses: molecular virology, pathogenesis, diagnosis and treatment. Elsevier Book, Perspect Med Virol. 2007;13:75–87.Google Scholar
  77. 77.
    Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, Toyofuku T, Uchiyama S, Goshima Y, Kumanogoh A, Takagi J. Structural basis for semaphorin signalling through the plexin receptor. Nature. 2010;467:1123–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Pandemic (H1N1) 2009—update 103. Disease Outbreak News. World Health Organization. 2010-06-04. Retrieved 2010-10-16. Accessed on 1st June 2015.Google Scholar
  79. 79.
    Poon L, Poon LLM, Guan Y, Nicholls JM, Yuen KY, Peiris JSM. Review, The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect Dis. 2004;4(11):663–71.CrossRefPubMedGoogle Scholar
  80. 80.
    Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, Fleck R, Boon-Huan TI, Aitken J, Sanmun D, Tang K, Yarwood K, Brink J, Sugrue RJ. Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics. 2010;9(9):1829–48.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Raska M, Czernekova L, Moldoveanu Z, et al. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther. 2014;11:23.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Reyes-Méndez MÁ, Juárez-Figueroa L, Iracheta-Hernández P, Medina-Islas Y, Ruiz-González V. Comparison of two diagnostic algorithms for the identification of patients with HCV viremia using a new HCVantigen test. Ann Hepatol. 2014;13:337–42.PubMedGoogle Scholar
  83. 83.
    Robinson EK, Evans BG. Oral sex and HIV transmission. AIDS. 1999;13:737–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR, Gamblin SJ, Skehel JJ. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad Sci USA. 2008;105:17736–41.PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Saijo M, Niikura M, Ikegami T, Kurane I, Kurata T, Morikawa S. laboratory diagnostic systems for Ebola and Marburg hemorrhagic fevers developed with recombinant proteins. Clin Vaccine Immunol. 2006;13:444–51.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Saldova R, Wormald MR, Dwek RA, Rudd PM. Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Mark. 2008;25(4–5):219–32.CrossRefGoogle Scholar
  87. 87.
    Schito ML, D’Souza MP, Owen SM, Busch MP. Supplementary Article, Challenges for rapid molecular HIV diagnostics. JID 2010:201(Suppl 1:S1–6).Google Scholar
  88. 88.
    Shtyrya YA, Mochalova LV, Bovin NV. Influenza virus neuraminidase: structure and function. Acta Naturae. 2009;1:26–32.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Silva LA, Khomandiak S, Ashbrook AW, Weller R, Heise MT, Morrison TE, Dermody TS. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol. 2014;88:2385–97.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Simonds RJ. Sensitivity and specificity of a qualitative RNA detection assay to diagnose HIV infection in young infants. AIDS. 1998;12:1545–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Storch GA. Diagnostic virology. Clin Infect Dis. 2000;31(3):739–51.CrossRefPubMedGoogle Scholar
  92. 92.
    Sullivan N, Yang ZY, Nabel GJ. Ebola virus pathogenesis: implications for vaccines and therapies. J Virol. 2003;77:9733–7.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat Immunol. 2008;9:17–23.CrossRefPubMedGoogle Scholar
  94. 94.
    Tan BH, Fu JL, Sugrue RJ. Characterization of the dengue virus envelope glycoprotein expressed in Pichia pastoris. Methods Mol Biol. 2007;379:163–76.CrossRefPubMedGoogle Scholar
  95. 95.
    Types of Influenza Viruses, Seasonal Influenza (Flu), CDC Three Types of Influenza Viruses—CDC. http://www.cdc.gov/flu/about/viruses/types.htm. Accessed on 1st June 2015.
  96. 96.
    Upadhyay RK. Biomarkers in Japanese encephalitis: a review. BioMed Res Int 2013; 2013:24, Article ID 591290.Google Scholar
  97. 97.
    Van-Gorp EC, Suharti C, Mairuhu AT, Dolmans WM, van Der Ven J, Demacker PN. Changes in the plasma lipid profile as a potential predictor of clinical outcome in dengue hemorrhagic fever. Clin Infect Dis. 2002;34:1150–3.CrossRefPubMedGoogle Scholar
  98. 98.
    Varki A, Cummings RD, Esko JD, editors. Essentials of glycobiology. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.Google Scholar
  99. 99.
    Wahl-Jensen V, Kurz SK, Hazelton PR. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol. 2005;79:2413–9.PubMedCentralCrossRefPubMedGoogle Scholar
  100. 100.
    Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U, Feldmann H, Schnittler H-J. Effects of Ebola Virus glycoproteins on endothelial cell activation and barrier function. J Virol. 2005;79:10442–50.PubMedCentralCrossRefPubMedGoogle Scholar
  101. 101.
    Wandingera KP, Steinhagena S, Schepera T, Meyera W, Barteltb U, Endersb G. Diagnosis of recent primary rubella virus infections: Significance of glycoprotein-based IgM serology, IgG avidity and immunoblot analysis. J Virol Method. 2011;174(1–2):85–93.CrossRefGoogle Scholar
  102. 102.
    WHO, Chikungunya, Chikungunya: WHO fact sheet on Chikungunya providing key facts and information on scope of the problem, who is at risk, prevention, WHO response. http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed on 1st June 2015.
  103. 103.
    WHO, Hepatitis C, Hepatitis C is a liver disease caused by the hepatitis C virus: the virus can cause both acute and chronic hepatitis infection, ranging in severity from a mild illness lasting a few weeks to a serious, lifelong illness. http://www.who.int/mediacentre/factsheets/fs164/en/. Accessed on 1st June 2015.
  104. 104.
    WHO, HIV/AIDS WHO fact sheet on HIV/AIDS with key facts and information on signs and symptoms, transmission, risk factors, testing and counselling, prevention, treatment and WHO response. who.int http://www.who.int/mediacentre/factsheets/fs360/en/. Accessed on 1st June 2015.
  105. 105.
    WHO, Influenza (Seasonal) WHO fact sheet on influenza: includes key facts, definition, symptoms, transmission, seasonal epidemics, effects, prevention, WHO response. http://www.who.int/mediacentre/factsheets/fs211/en/. Accessed on 1st June 2015.
  106. 106.
    WHO, Prevention and Control of Viral Hepatitis Infection: Framework for Global Action who.int http://www.who.int/hiv/pub/hepatitis/Framework/en/. Accessed on 1st June 2015.
  107. 107.
    WHO, Urgently needed: rapid, sensitive, safe and simple Ebola diagnostic tests, The goal of interrupting chains of Ebola virus transmission depends heavily on laboratory support. http://www.who.int/mediacentre/news/ebola/18-november-2014-diagnostics/en/. Accessed on 1st June 2015.
  108. 108.
    WHO, data and statistics. http://www.who.int/hiv/data/en/data and statistics Accessed on 1st June 2015.
  109. 109.
    WHO, Dengue and severe dengue, WHO fact sheet dengue and severe dengue provides key facts, definition, provides information on global burden, transmission, characteristics, treatment, prevention and control and WHO response. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed on 1st June 2015.
  110. 110.
    WHO, Ebola Situation Reports, http://apps.who.int/ebola/ebola-situation-reports. Accessed on 1st June 2015.
  111. 111.
    WHO, Ebola virus disease, WHO fact sheet on Ebola: key facts, definition, transmission, symptoms, diagnosis, treatment, prevention, WHO response. http://www.who.int/mediacentre/factsheets/fs103/en/. Accessed on 1st June 2015.
  112. 112.
    WHO, HIV/AIDS, WHO launches new guidelines on HIV testing services. http://www.who.int/hiv/en/. Accessed on 1st June 2015.
  113. 113.
    WHO, Middle East respiratory syndrome coronavirus (MERS-CoV) :Summary of Current Situation, Literature Update and Risk Assessment–as of 5 Feb 2015. http://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf. Accessed on 1st June 2015.
  114. 114.
    WHO, Summary table of SARS cases by country, 1 Nov 2002–7 August 2003 http://www.who.int/csr/sars/country/country2003_08_15.pdf. Accessed on 1st June 2015.
  115. 115.
    Xiao X, Dimitrov DS. The SARS-CoV S glycoprotein. Cell Mol Life Sci. 2004;61:2428–30.CrossRefPubMedGoogle Scholar
  116. 116.
    Yuan J, Zhang Y, Li J, Zhang Y, Wang L-F, Shi Z. Serological evidence of ebolavirus infection in bats, China. Virol J. 2012;9:236.PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Zhao N, Martin BE, Yang C-K, Luo F, Wan X-F. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans. Sci Rep. 2015;5:15778. doi: 10.1038/srep15778.PubMedCentralCrossRefPubMedGoogle Scholar
  118. 118.
    Zheng J, Tan BH, Sugrue R, Tang K. Current approaches on viral infection: proteomics and functional validations. Front Microbiol. 2012;3:393.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Indian Virological Society 2016

Authors and Affiliations

  1. 1.Department of Laboratory MedicineSchool of Tropical MedicineKolkataIndia

Personalised recommendations