Skip to main content
Log in

Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Dengue has emerged to be global health problem worldwide. Hence there is an immediate need to adopt new strategies in the development of effective anti-dengue drugs. Extracts from the leaves of Azadirachta indica has been traditionally used in folk medicine for viral infections. In the present study we report the anti-viral potency of nimbin, the active compound from the neem leaf extract against the envelope protein of dengue virus. Progression of viral entry into the host cell is facilitated by the envelope protein of dengue virus, suggesting; it as an effective anti-viral target. Nimbin is found to be effective against the envelope protein of all four types of dengue virus (dengue 1–4), which is evident from our in silico analysis. Our findings suggest the clinical importance of nimbin, which can serve as effective lead compound for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alavijeh MS, Chishty M, Palmer AM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2:554–71.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Badam L, Joshi SP, Bedekar SS. In vitro antiviral activity of neem (Azadirachta indica, A. Juss) leaf extract against group BCoxsackie viruses. J Commun Dis. 1999;31:79–90.

    CAS  PubMed  Google Scholar 

  3. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78:431–41.

    Article  CAS  PubMed  Google Scholar 

  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyallow IN, Bourne PE. The Protein data bank. Nucleic Acid Res. 2000;28:235–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Braga RC, Alves VM, Silva MFB, Muratov E, Fourches D, Tropsha A, Andrade CH. Tuning hERG out: antitarget QSAR models for drug development. Curr Top Med Chem. 2014;14:1399–415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Braga RC, Alves VM, Silva MFB, Muratov E, Fourches D, Liao LM, Tropsha A, Andrade CH. Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol Inf. 2015;. doi:10.1002/minf.201500040.

    Google Scholar 

  7. Chattopadhyay D, Sarkar MC, Chatterjee T, Dey SR, Bag P, Chakraborti S, Khan MT. Recent advancements for the evaluation of anti-viral activities of natural products. N Biotechnol. 2009;25:347–68.

    Article  CAS  PubMed  Google Scholar 

  8. Chaturvedi PR, Decker CJ, Odinecs A. Prediction of pharmacokinetic properties using experimental approaches during early drug discovery. Curr Opin Chem Biol. 2001;5:452–63.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. admetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J Chem Inf Model. 2012;52:3099–105.

    Article  CAS  PubMed  Google Scholar 

  10. Cleves AE, Jain AN. Effects of inductive bias on computational evaluations of ligand-based modeling and on drug discovery. J Comput Aided Mol Des. 2008;22:147–59.

    Article  CAS  PubMed  Google Scholar 

  11. Cockburn JJ, Sanchez NME, Fretes N, Urvoas A, Staropoli I, Kikuti CM, Coffey LL, Seisdedos FA, Bedouelle H, Rey FA. Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody. Structure. 2012;20(2):303–14.

    Article  CAS  PubMed  Google Scholar 

  12. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des. 1997;11:425–45.

    Article  CAS  PubMed  Google Scholar 

  13. Figueiredo MAA, Rodrigues LC, Barreto ML, Wellington JO, Costa MCN, Morata V, Vasconcelos PFC, Nunes MRT, Teoxeora MG. Allergies and diabetes as risk factors for dengue hemorrhagic fever: results of a case control study. PLoS Negl Trop Dis. 2010;4:e699.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Frimayanthi N, Chee CF, Zain SM, Rahman NA. Design of new competitive dengue Ns2b/Ns3 protease inhibitors—a computational approach. Int J Mol Sci. 2011;12:1089–100.

    Article  Google Scholar 

  15. Ghimeray AK, Jin C, Ghimire BK, Cho DH. Antioxidant activity and quantitative estimation of azadirachtin and nimbin in Azadirachta Indica A. Juss grown in foothills of Nepal. Afri. J Biol. 2009;8:3084–91.

    CAS  Google Scholar 

  16. Goswami RP, Mukherjee A, Biswas T, Karmakar PS, Ghosh A. Two cases of dengue meningitis: a rare first presentation. J Infect Dev Ctries. 2012;6:208–11.

    Article  PubMed  Google Scholar 

  17. Gupta N, Srivastava S, Jain A, Chaturvedi UC. Dengue in India. Indian J Med Res. 2012;136:373–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez ES, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8:S7–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hermann EC, Muccra J, Kucera LS. Antiviral substances in plants of the mint family (Labiatae). Proc Soc Exp Biol Med. 1967;124:865–74.

    Article  Google Scholar 

  20. Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990;174:479.

    Article  Google Scholar 

  21. Huttunen KM, Raunio H, Rautio J. Prodrugs—from serendipity to rational design. Pharamacol Rev. 2011;63:750–71.

    Article  CAS  Google Scholar 

  22. Inoue M, Morikawa M, Tsuboi M, Yamada T, Sugiura M. Hydrolysis of ester-type drugs by the purified Esterase from human intestinal mucosa. Jpn J Pharmacol. 1979;29:17–25.

    Article  CAS  PubMed  Google Scholar 

  23. Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996;10:427–40.

    Article  CAS  PubMed  Google Scholar 

  24. Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46:499–511.

    Article  CAS  PubMed  Google Scholar 

  25. Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46:499–511.

    Article  CAS  PubMed  Google Scholar 

  26. Ji HF, Li XJ, Zhang HY. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009;10:194–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci. 2012;13:16785–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol. 1995;245:43–53.

    Article  CAS  PubMed  Google Scholar 

  29. Kamb KM, Amoral M, Girre L. Search for non-antiviral agents of plant origin. Pharmacol Acta Helv. 1992;67:130–47.

    Google Scholar 

  30. Keller TH, Pichota A, Yin Z. A practical view of ‘druggability’. Curr Opin Chem Biol. 2006;10:357–61.

    Article  CAS  PubMed  Google Scholar 

  31. Kerns EH, Di L. Drug-like properties: concepts, structure design and methods—from ADMET to toxicity optimization. 1st ed. London: Academic Press; 2010. p. 426–38.

    Google Scholar 

  32. Lin JH. Role of P-glycoprotein in pharmacokinetics clinical implications. Clin Pharmacokinet. 2003;42:59–98.

    Article  CAS  PubMed  Google Scholar 

  33. Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation. J Comput Chem. 1992;13:505–24.

    Article  CAS  Google Scholar 

  34. Mitchell MJ, Smith SL, Johnson S, Morgan ED. Effects of the neem tree compounds azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase activity. Arch Insect Biochem Physiol. 1997;35:199–209.

    Article  CAS  PubMed  Google Scholar 

  35. Modis Y, Ogata S, Clements D, Harrison SC. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol. 2005;79(2):1223–12231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Molinspiration Cheminformatics, Bratislava, Slovak Republic. www.molinspiration.com/services/properties.html. Accessed Sept 2013.

  37. Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res. 1997;14:568–71.

    Article  CAS  PubMed  Google Scholar 

  38. Pardridge WM. CNS drug design based on principles of blood–brain barrier transport. J Neurochem. 1998;70:1781–92.

    Article  CAS  PubMed  Google Scholar 

  39. Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002;79:273–8.

    Article  CAS  PubMed  Google Scholar 

  40. Patrick GL. An introduction to medicinal chemistry. New York: Oxford University Press; 2001.

    Google Scholar 

  41. Plasencia C, Dayam R, Wang Q, Pinski J, Burke TR, Quinn DI, Neamati N. Discovery and preclinical evaluation of a novel class of small-molecule compounds in hormone-dependent and -independent cancer cell lines. Cancer Ther. 2005;4:110.

    Article  Google Scholar 

  42. Pramely R, Raj TLS. Prediction of biological activity spectra of a few phytoconstituents of Azadirachta indicia Juss. J Biol Technol. 2012;3:375–9.

    CAS  Google Scholar 

  43. Rai AR, Sethi M. Screening of some plants for their activity against vaccinia and fowl pox viruses. Indian J Anim Sci. 1972;42:1066–70.

    Google Scholar 

  44. Rao AR, Kumar SSV, Paramsivam TR, Kamalakshi S, Parashuraman AR, Shanta B. Study of antiviral activity of leaves of margosa tress on vaccinia and variola viruses—a preliminary report. Indian J Med Res. 1969;57:495–502.

    CAS  PubMed  Google Scholar 

  45. Reddy AB, Sethi MS. Antiviral effects of some indigenious plant extracts on vaccinia and fowl pox viruses on chick embryo fibroblasts. Indian J Exp Biol. 1974;12:572–9.

    CAS  PubMed  Google Scholar 

  46. Rees DC, Congreve M, Murray CW, Carr R. Fragment-based lead discovery. Nat Rev Drug Discov. 2004;3:660–72.

    Article  CAS  PubMed  Google Scholar 

  47. Sai Ram M, Ilavazhagan G, Sharma SK, Dhanraj SA, Saresh B, Parida MM, Jan AM, Davendra K, Selvanmurthy W. Antimicrobial activity of a new vaginal contraceptive NIM. 76 from neem oil (Azadirachta indica). J Ethnopharmacol. 2000;1:377–82.

    Article  Google Scholar 

  48. Sayet KA. Natural products as antiviral agents. Stud Nat Prod Chem. 2000;24:473–572.

    Article  Google Scholar 

  49. Sidhu O, Kumar VP, Hari MB. Variability in triterpenoids (Nimbin and Salanin) composition of neem among different provenances of India. Ind Crops Prod. 2004;19:69–75.

    Article  CAS  Google Scholar 

  50. Sim S, Ramirez JL, Dimopoulos G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 2012;8:e1002631.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anticancer Agents. 2005;5(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  52. Tang LI, Ling AP, Koh RY, Chye SM, Voon KG. Screening of anti-dengue activity in methanolic extracts of medicinal plants. Bmc Complem Altern Med. 2012;12:3.

    Article  Google Scholar 

  53. Tiwari V, Darmani NA, Yue BYUT, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res. 2010;24:1132–40.

    PubMed Central  PubMed  Google Scholar 

  54. Upadhyay SN, Dhawan S, Garg S, Wali N, Tusker L, Anderson DJ. Immunomodulatory properties of neem. In: World Neem Conference: Bangalore, India. 1993 (p. abstract no. 80).

  55. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability or drugs. J Med Chem. 2002;45:2615–23.

    Article  CAS  PubMed  Google Scholar 

  56. Wang QY, Patel SJ, Vangrevelinghe E, Xu HY, Rao R, Jaber D, Schul W, Gu F, Heudi O, Ma NL, Poh MK, Phong WY, Keller TH, Jacoby E, Vasudevan SG. A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother. 2009;53:1823–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Williams FM. Clinical significance of esterases in man. Clin Pharmacokinet. 1985;10(5):392–403.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossman MJ. Conformational changes of the Flavivirus E glycoprotein. Structure. 2004;12(9):1607–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.R and A.A gratefully acknowledges the Indian Council of Medical Research (ICMR), Government of India Agency for the research Grant [IRIS ID: 2014-0099] to carry out this research. P. Lavanya thanks ICMR for the research fellowship. We would like to thank the management of VIT University for providing us the necessary facilities to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbarasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, P., Ramaiah, S. & Anbarasu, A. Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein. VirusDis. 26, 243–254 (2015). https://doi.org/10.1007/s13337-015-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-015-0280-x

Keywords

Navigation