Skip to main content
Log in

Inverse parameter and shape problem for an isotropic scatterer with two conductivity coefficients

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the direct and inverse problem for isotropic scatterers with two conductive boundary conditions. First, we show the uniqueness for recovering the coefficients from the known far-field data at a fixed incident direction for multiple frequencies. Then, we address the inverse shape problem for recovering the scatterer for the measured far-field data at a fixed frequency. Furthermore, we examine the direct sampling method for recovering the scatterer by studying the factorization for the far-field operator. The direct sampling method is stable with respect to noisy data and valid in two dimensions for partial aperture data. The theoretical results are verified with numerical examples to analyze the performance by the direct sampling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Abele, D., Kleefeld, A.: New numerical results for the optimization of Neumann eigenvalues. In: Constanda, C. (ed.) Computational and Analytic Methods in Science and Engineering, pp. 1–20. Springer, New York (2020)

    Google Scholar 

  2. Anagnostopoulos, K.A., Charalambopoulos, A., Kleefeld, A.: The factorization method for the acoustic transmission problem. Inverse Probl. 29(11), 115015 (2013)

    MathSciNet  Google Scholar 

  3. Ahn, C.Y., Chae, S., Park, W.-K.: Fast identification of short, sound-soft open arcs by the orthogonality sampling method in the limited-aperture inverse scattering problem. Appl. Math. Lett. 109, 106556 (2020)

    MathSciNet  Google Scholar 

  4. Ammari, H., Iakovleva, E., Lesselier, D.: A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency. Multiscale Model. Simul. 3, 597–628 (2005)

    MathSciNet  Google Scholar 

  5. Audibert, L., Haddar, H.: A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements. Inverse Probl. 30, 035011 (2014)

    Google Scholar 

  6. Blåsten, E., Liu, H.: Recovering piecewise constant refractive indices by a single far-field pattern. Inverse Probl. 36, 085005 (2020)

    MathSciNet  Google Scholar 

  7. Bondarenko, O., Harris, I., Kleefeld, A.: The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary. Appl. Anal. 96(1), 2–22 (2017)

    MathSciNet  Google Scholar 

  8. Bondarenko, O., Liu, X.: The factorization method for inverse obstacle scattering with conductive boundary condition. Inverse Probl. 29, 095021 (2013)

    MathSciNet  Google Scholar 

  9. Bramble, J.: A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math. Models Methods Appl. Sci. 13(3), 361–372 (2003)

    MathSciNet  Google Scholar 

  10. Cakoni, F., Colton, D.: A Qualitative Approach to Inverse Scattering Theory. Springer, Berlin (2016)

    Google Scholar 

  11. Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues, CBMS Series, SIAM 88, Philadelphia (2016)

  12. Ceja Ayala, R., Harris, I., Kleefeld, A., Pallikarakis, N.: Analysis of the transmission eigenvalue problem with two conductivity parameters, Appl. Anal. https://doi.org/10.1080/00036811.2023.2181167. arXiv:2209.07247

  13. Ceja Ayala, R., Harris, I., Kleefeld, A.: Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary. Inverse Probl. Imaging. https://doi.org/10.3934/ipi.2023051. arXiv:2305.15310

  14. Chesnel, L.: Bilaplacian problems with a sign-changing coefficient. Math. Methods Appl. Sci. 39, 4964–4979 (2016)

    MathSciNet  Google Scholar 

  15. Chow, Y.-T., Han, F., Zou, J.: A direct sampling method for simultaneously recovering inhomogeneous inclusions of different nature. SIAM J. Sci. Comput. 43(3), A2161–A2189 (2021)

    MathSciNet  Google Scholar 

  16. Chow, Y.-T., Ito, K., Liu, K., Zou, J.: Direct sampling method for diffusive optical tomography. SIAM J. Sci. Comput. 37(4), A1658–A1684 (2015)

    MathSciNet  Google Scholar 

  17. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Google Scholar 

  18. Evans, L.: Partial Differential Equations, 2nd edn. AMS, Providence (2010)

    Google Scholar 

  19. Griesmaier, R., Hanke, M., Sylvester, J.: Far field splitting for the Helmholtz equation. SIAM J. Numer. Anal. 52(1), 343–362 (2014)

    MathSciNet  Google Scholar 

  20. Griesmaier, R., Schmiedecke, C.: A factorization method for multifrequency inverse source problems with sparse far field measurements. SIAM J. Imaging Sci. 10, 2119–2139 (2017)

    MathSciNet  Google Scholar 

  21. Griesmaier, R., Schmiedecke, C.: A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering. Inverse Probl. 33, 035015 (2017)

    MathSciNet  Google Scholar 

  22. Harris, I.: Direct methods for recovering sound soft scatterers from point source measurements. Computation 9(11), 120 (2021)

    Google Scholar 

  23. Harris, I., Kleefeld, A.: The inverse scattering problem for a conductive boundary condition and transmission eigenvalues. Appl. Anal. 99(3), 508–529 (2020)

    MathSciNet  Google Scholar 

  24. Harris, I., Kleefeld, A.: Analysis and computation of the transmission eigenvalues with a conductive boundary condition. Appl. Anal. 101(6), 1880–1895 (2022)

    MathSciNet  Google Scholar 

  25. Harris, I., Kleefeld, A.: Analysis of new direct sampling indicators for far-field measurements. Inverse Probl. 35, 054002 (2019)

    MathSciNet  Google Scholar 

  26. Harris, I., Nguyen, D.-L.: Orthogonality sampling method for the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 42(3), B722–B737 (2020)

    MathSciNet  Google Scholar 

  27. Harris, I., Nguyen, D.-L., Nguyen, T.-P.: Direct sampling methods for isotropic and anisotropic scatterers with point source measurements. Inverse Probl. Imaging 16(5), 1137–1162 (2022)

    MathSciNet  Google Scholar 

  28. Harris, I., Rezac, J.: A sparsity-constrained sampling method with applications to communications and inverse scattering. J. Comput. Phys. 451, 110890 (2022)

    MathSciNet  Google Scholar 

  29. Hu, G., Li, J., Liu, H.: Uniqueness in determining refractive indices by formally determined far-field data. Appl. Anal. 94(6), 1259–1269 (2014)

    MathSciNet  Google Scholar 

  30. Ito, K., Jin, B., Zou, J.: A direct sampling method to an inverse medium scattering problem. Inverse Probl. 28, 025003 (2012)

    MathSciNet  Google Scholar 

  31. Ito, K., Jin, B., Zou, J.: A direct sampling method for inverse electromagnetic medium scattering. Inverse Probl. 29, 095018 (2013)

    MathSciNet  Google Scholar 

  32. Kang, S., Park, W.-K.: Application of MUSIC algorithm for identifying small perfectly conducting cracks in limited-aperture inverse scattering problem. Comput. Math. Appl. 117, 97–112 (2022)

    MathSciNet  Google Scholar 

  33. Kang, S., Lim, M.: Monostatic sampling methods in limited-aperture configuration. Appl. Math. Comput. 427, 127170 (2022)

    MathSciNet  Google Scholar 

  34. Kang, S., Lim, M., Park, W.-K.: Fast identification of short, linear perfectly conducting cracks in a bistatic measurement configuration. J. Comput. Phys. 468, 111479 (2022)

    MathSciNet  Google Scholar 

  35. Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (2014)

    Google Scholar 

  36. Li, J.: Reverse time migration for inverse obstacle scattering with a generalized impedance boundary condition. Appl. Anal. 101(1), 48–62 (2022)

    MathSciNet  Google Scholar 

  37. Liu, X.: A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency. Inverse Probl. 33, 085011 (2017)

    MathSciNet  Google Scholar 

  38. Liu, X., Meng, S., Zhang, B.: Modified sampling method with near field measurements. SIAM J. Appl. Math. 82(1), 244–266 (2022)

    MathSciNet  Google Scholar 

  39. Nguyen, D.-L.: Direct and inverse electromagnetic scattering problems for bi-anisotropic media. Inverse Probl. 35, 124001 (2019)

    MathSciNet  Google Scholar 

  40. Nguyen, T.-P., Guzina, B.: Generalized linear sampling method for the inverse elastic scattering of fractures in finite bodies. Inverse Probl. 35, 104002 (2019)

    MathSciNet  Google Scholar 

  41. Pourahmadian, F., Guzina, B., Haddar, H.: Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures. Inverse Probl. 33, 055007 (2017)

    MathSciNet  Google Scholar 

  42. Sun, J., Zhang, J.: Multi-frequency extended sampling method for the inverse acoustic source problem. Electron. Res. Arch. 31(7), 4216–4231 (2023)

    MathSciNet  Google Scholar 

  43. Xiang, J., Yan, G.: Uniqueness of the inverse transmission scattering with a conductive boundary condition. Acta Math. Sci. 41, 925–940 (2021)

    MathSciNet  Google Scholar 

  44. Xiang, J., Yan, G.: Uniqueness of inverse transmission scattering with a conductive boundary condition by phaseless far field pattern. Acta Math. Sci. 43, 450–468 (2023)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of R. Ceja Ayala and I. Harris is partially supported by the NSF DMS Grant 2107891.

Author information

Authors and Affiliations

Authors

Contributions

I.H. worked on the analysis and editing of the main document R.C-A. worked on the analysis, numerical examples, and writing of the main document A.K. worked on the numerical examples and editing of the main document

Corresponding author

Correspondence to Isaac Harris.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, R.C., Harris, I. & Kleefeld, A. Inverse parameter and shape problem for an isotropic scatterer with two conductivity coefficients. Anal.Math.Phys. 14, 90 (2024). https://doi.org/10.1007/s13324-024-00950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00950-x

Navigation