Skip to main content
Log in

On a problem of E. Meckes for the unitary eigenvalue process on an arc

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the problem originally communicated by E. Meckes on the asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process of a random \(n \times n\) matrix. The eigenvalues \(p_{j}\) of the kernel are, in turn, associated with the discrete prolate spheroidal wave functions. We consider the eigenvalue counting function \(|G(x,n)|:=\#\{j:p_j>Ce^{-x n}\}\), (\(C>0\) here is a fixed constant) and establish the asymptotic behavior of its average over the interval \(x \in (\lambda -\varepsilon , \lambda +\varepsilon )\) by relating the function |G(xn)| to the solution J(q) of the following energy problem on the unit circle \(S^{1}\), which is of independent interest. Namely, for given \(\theta \), \(0<\theta < 2 \pi \), and given q, \(0<q<1\), we determine the function \(J(q) =\inf \{I(\mu ): \mu \in \mathcal {P}(S^{1}), \mu (A_{\theta }) = q\}\), where \(I(\mu ):= \int \!\int \log \frac{1}{|z - \zeta |} d\mu (z) d\mu (\zeta )\) is the logarithmic energy of a probability measure \(\mu \) supported on the unit circle and \(A_{\theta }\) is the arc from \(e^{-i \theta /2}\) to \(e^{i \theta /2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ameur, Y., Marceca, F., Romero, J.-L.: Gaussian beta ensembles: the perfect freezing transition and its characterization in terms of Beurling–Landau densities. arxiv: 2205.15054

  2. Boulsane, M., Bourguiba, N., Karoui, A.: Discrete prolate spheroidal wave functions: further spectral analysis and some related applications. J. Sci. Comput. 82(3), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chafaï, D., Ferré, G., Stoltz, G.: Coulomb gases under constraint: some theoretical and numerical results. SIAM J. Math. Anal. 53(1), 181–220 (2021)

    Article  MathSciNet  Google Scholar 

  4. Charlier, C., Claeys, T.: Asymptotics for Toeplitz determinants: perturbation of symbols with a gap. J. Math. Phys. 56(2), 022705 (2015)

    Article  MathSciNet  Google Scholar 

  5. Charlier, C., Claeys, T.: Thinning and conditioning of the circular unitary ensemble. Random Matrices Theory Appl. 6(2), 1750007 (2017)

    Article  MathSciNet  Google Scholar 

  6. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, vol. 38. Springer, Berlin (2009)

    Google Scholar 

  7. Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235–250 (1970). (MR-0278668)

    Article  MathSciNet  Google Scholar 

  8. Hiai, F., Petz, D.: A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices. Ann. Inst. Henri Poincar’e Probab. Stat. 36(1), 71–85 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006). (MR-2216966)

    Article  MathSciNet  Google Scholar 

  10. Karnik, S., Romberg, J., Davenport, M.A.: Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences. Appl. Comput. Harmon. Anal. 55, 97–128 (2021). https://doi.org/10.1016/j.acha.2021.04.002

    Article  MathSciNet  Google Scholar 

  11. Karnik, S., Zhu, Z., Wakin, M.B., Romberg, J., Davenport, M.A.: The fast Slepian transform. Appl. Comput. Harmon. Anal. 46(3), 624–652 (2019)

    Article  MathSciNet  Google Scholar 

  12. Katz, N.M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Amer. Math. Soc. Colloq. Publ., vol. 45. American Mathematical Society, Providence, RI, MR-1659828 (1999)

  13. Lachance, M., Saff, E.B., Varga, R.S.: Inequalities for polynomials with a prescribed zero. Math. Z. 168, 105–116 (1979)

    Article  MathSciNet  Google Scholar 

  14. Liu, T., Meckes, E.: Asymptotics for the eigenvalues of the kernel of the unitary eigenvalue process restricted to an arc (personal communication)

  15. Martínez-Finkelshtein, A., Saff, E.B.: Asymptotic properties of Heine–Stieltjes and Van Vleck polynomials. J. Approx. Theory 118(1), 131–151 (2002). https://doi.org/10.1006/jath.2002.3705. (ISSN 0021-9045)

    Article  MathSciNet  Google Scholar 

  16. Meckes, E.: The random matrix theory of the classical compact groups. Camb. Tracts Math. (2019). https://doi.org/10.1017/9781108303453

    Article  Google Scholar 

  17. Porter, D., Stirling, D.S.G.: Integral Equations: A Practical Treatment, from Spectral Theory to Applications. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  18. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    Book  Google Scholar 

  19. Saff, E.B., Ullman, J.L., Varga, R.S.: Incomplete polynomials: an electrostatics approach. In: Cheney, E.W. (ed) Approximation Theory III, pp. 769–782. Academic Press, New York (1980)

  20. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty–V: the discrete case. Bell Syst. Tech. J. 57(5), 1371–1430 (1978). https://doi.org/10.1002/j.1538-7305.1978.tb02104.x

    Article  Google Scholar 

  21. Widom, H.: The strong Szegő limit theorem for circular arcs. Indiana Univ. Math. J. 21, 277–283 (1971)

    Article  MathSciNet  Google Scholar 

  22. Zhu, Z., Wakin, M.B.: Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences, In: Proc. Int. Work. on Compressed Sensing Theory Appl. Radar, Sonar and Remote Sens. (CoSeRa), Pisa, Italy (2015)

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. Kryvonos and E.B. Saff wrote the main manuscript, all authors reviewed the manuscript.

Corresponding author

Correspondence to L. Kryvonos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The problem was communicated to the second author shortly before the untimely death of Professor Meckes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryvonos, L., Saff, E.B. On a problem of E. Meckes for the unitary eigenvalue process on an arc. Anal.Math.Phys. 14, 59 (2024). https://doi.org/10.1007/s13324-024-00919-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00919-w

Keywords

Mathematics Subject Classification

Navigation