Skip to main content
Log in

Nitsche type inequality for hyperbolic harmonic mappings between annuli in the unit ball \(\mathbb {B}^3\)

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove a Nitsche type inequality for hyperbolic harmonic mappings between rings in the hyperbolic ball \(\mathbb {B}^3\subset \mathbb {R}^3\). It states the following: there is a positive function \(\Phi (a,b)\), so if there exists a hyperbolic harmonic mapping of a spherical annulus \(\mathbb {A}(a,b)\subset \mathbb {B}^3\) onto a spherical annulus \(\mathbb {A}(1,R)\), then \(R\ge 1+\Phi (a,b)\). The best such function \(\Phi \) is explicitly estimated and conjectured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics. Minn, Minneapolis (1981)

  2. Astala, K., Iwaniec, T., Martin, G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bshouty, D., Lyzzaik, A., Rasila, A., Vasudevarao, A.: Moduli of doubly connected domains under univalent harmonic maps. J. Geom. Anal. 32(5), 152 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Han, Z.-C.: Remarks on the Geometric Behavior of Harmonic Maps Between Surfaces. In: Chow, B. et al. (ed.) Elliptic and parabolic methods in geometry. In: Proceedings of a Workshop, Minneapolis,MN, USA, May 23–27, 1994. A K Peters, Wellesley, pp 57–66 (1996)

  5. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. J. Am. Math. Soc. 24(2), 345–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iwaniec, T., Onninen, J.: \(n\)-harmonic mappings between annuli: the art of integrating free Lagrangians. Mem. Am. Math. Soc. 1023(vii), 105 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Jost, J.: Riemannian geometry and geometric analysis. (English) Universitext, vol. viii, 6th edn., p. 611. Springer, Berlin (2008)

    Google Scholar 

  8. Kalaj, D.: On the univalent solution of PDE \(\triangle u=f\) between spherical annuli. J. Math. Anal. Appl. 327(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalaj, D.: On a J C C Nitsche’s type inequality for the hyperbolic space \(H^3\). Potential Anal. 41(3), 931–943 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalaj, D.: Harmonic maps between annuli on Riemann surfaces. Israel J. Math. 182, 123–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kalaj, D.: Harmonic maps between two concentric annuli in \(R^3\). Adv. Calc. Var. 14(3), 303–312 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kalaj, D.: On the Nitsche conjecture for harmonic mappings in \( R^2\) and \( R^3\). Israel J. Math. 150, 241–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalaj, D.: Deformations of annuli on Riemann surfaces with smallest mean distortion. J. Lond. Math. Soc. II. Ser. 93(3), 683–702 (2016)

    Article  MATH  Google Scholar 

  14. Lyzzaik, A.: The modulus of the image of annuli under univalent harmonic mappings and a conjecture of J. C. C. Nitsche. J. Lond. Math. Soc. 64, 369–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nitsche, J.C.C.: On the modulus of doubly connected regions under harmonic mappings. Am. Math. Mon. 69, 781–782 (1962)

    Article  MATH  Google Scholar 

  16. Martin, G., McKubre-Jordens, M.: Deformations with smallest weighted Lp average distortion and Nitsche type phenomena. J. Lond. Math. Soc. II. Ser. J. Profile 85(2), 282–300 (2012)

    Article  MATH  Google Scholar 

  17. Rudin, W.: Function theory in the unit ball of \(C^n\). Reprint of the 1980 original. Classics in Mathematics. xviiii, p. 436. Springer, Berlin (2008)

  18. Stoll, M.: Harmonic and subharmonic function theory on the hyperbolic ball. London Mathematical Society Lecture Note Series 431. xv, p. 225 Cambridge University Press, Cambridge (2016)

  19. Weitsman, A.: Univalent harmonic mappings of annuli and a conjecture of J.C.C. Nitsche. Israel J. Math. 124, 327–331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Ethics declarations

Conflict of interest

The author has no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

Is not applicable to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaj, D. Nitsche type inequality for hyperbolic harmonic mappings between annuli in the unit ball \(\mathbb {B}^3\). Anal.Math.Phys. 13, 57 (2023). https://doi.org/10.1007/s13324-023-00820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00820-y

Keywords

Mathematics Subject Classification

Navigation