Skip to main content
Log in

On solutions for several systems of complex nonlinear partial differential equations with two variables

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is devoted to describe the entire solutions of several systems of the first order nonlinear partial differential equations. By using the Nevanlinna theory and the Hadamard factorization theory of meromorphic functions, we establish some interesting results to reveal the existence and the forms of the finite order transcendental entire solutions of several systems of the first order nonlinear partial differential equations

$$\begin{aligned} \left\{ \begin{aligned}&\left( au_{z_1}+bu_{z_2}\right) \left( cv_{z_1}+dv_{z_2}\right) =e^g,\\&\left( av_{z_1}+bv_{z_2}\right) \left( cu_{z_1}+d u_{z_2}\right) =e^g, \end{aligned} \right. \\ \left\{ \begin{aligned}&\left( au_{z_1}+bv_{z_2}\right) \left( cu_{z_2}+dv_{z_1}\right) =e^g,\\&\left( au_{z_2}+bv_{z_1}\right) \left( cu_{z_1}+dv_{z_2}\right) =e^g, \end{aligned} \right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned}&\left( au_{z_1}+bv_{z_1}\right) \left( cu_{z_2}+dv_{z_2}\right) =e^g,\\&\left( au_{z_2}+bv_{z_2}\right) \left( cu_{z_1}+dv_{z_1}\right) =e^g, \end{aligned} \right. \end{aligned}$$

where \(a,b,c,d\in {\mathbb {C}}\), and g is a polynomial in \({\mathbb {C}}^2\). Moreover, some examples are given to explain that there are significant differences in the forms of solutions from some previous systems of functional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No data were used to support this study.

References

  1. Cao, T.B., Korhonen, R.J.: A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl. 444(2), 1114–1132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, T.B., Xu, L.: Logarithmic difference lemma in several complex variables and partial difference equations. Annali di Matematica. 199, 767–794 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, W., Han, Q.: On entire solutions to eikonal-type equations. J. Math. Anal. Appl. 506, 124704 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Han, Q., Liu, J.: On Fermat Diophantine functional equations, little Picard theorem, and beyond. Aequ. Math. 93, 425–432 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II, partial differential equations, Interscience, New York (1962)

  6. Garabedian, P.R.: Partial Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  7. Hemmati, J.E.: Entire solutions of first-order nonlinear partial differential equations. Proc. Amer. Math. Soc. 125, 1483–1485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, P.C., Li, P., Yang, C.C.: Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, vol. 1. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  9. Khavinson, D.: Remarks on the interplay between algebra and PDE. In: Analysis of Operators on Function Spaces, pp. 239-246. Birkhäuser/Springer, Cham (2019)

  10. Khavinson, D.: A note on entire solutions of the eiconal equation. Amer. Math. Mon. 102, 159–161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khavinson, D., Lundberg, E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory. American Mathematical Society, Providence (2018)

    Book  MATH  Google Scholar 

  12. Li, B.Q.: On entire solutions of Fermat type partial differential equations. Int. J. Math. 15, 473–485 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, B.Q.: Entire solutions of certain partial differential equations and factorization of partial derivatives. Tran. Amer. Math. Soc. 357(8), 3169–3177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B.Q.: Entire solutions of \((u_{z_1})^m+(u_{z_2})^n=e^g\). Nagoya Math. J. 178, 151–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, B.Q.: Entire solutions of eiconal type equations. Arch. Math. 89, 350–357 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, K.: Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 359, 384–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, K., Cao, T.B.: Entire solutions of Fermat type difference differential equations. Electron. J. Diff. Equ. 2013(59), 1–10 (2013)

    MathSciNet  Google Scholar 

  18. Liu, K., Cao, T.B., Cao, H.Z.: Entire solutions of Fermat type differential-difference equations. Arch. Math. 99, 147–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, K., Laine, I., Yang, L.Z.: Complex Delay-Differential Equations. De Gruyter, Boston (2021)

    Book  MATH  Google Scholar 

  20. Lü, F.: Entire solutions of a variation of the eikonal equation and related PDEs. Proc. Edinb. Math. Soc. 63, 697–708 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lü, F., Li, Z.: Meromorphic solutions of Fermat type partial differential equations. J. Math. Anal. Appl. 478(2), 864–873 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pólya, G.: On an integral function of an integral function. J. Lond. Math. Soc. 1, 12–15 (1926)

    Article  MATH  Google Scholar 

  23. Ronkin, L.I.: Introduction to the Theory of Entire Functions of Several Variables, Moscow: Nauka 1971 (Russian). American Mathematical Society, Providence (1974)

    Book  Google Scholar 

  24. Saleeby, E.G.: Entire and meromorphic solutions of Fermat type partial differential equations. Analysis 19, 69–376 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saleeby, E.G.: On complex analytic solutions of certain trinomial functional and partial differential equations. Aequat. Math. 85, 553–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saleeby, E.G.: Meromorphic solutions of generalized inviscid Burgers’ equations and a family of quadratic PDEs. J. Math. Anal. Appl. 425, 508–519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saleeby, E.G.: On meromorphic solutions of first-order Briot-Bouquet type PDEs. J. Math. Anal. Appl. 482, 123517 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stoll, W.: Holomorphic Functions of Finite Order in Several Complex Variables. American Mathematical Society, Providence (1974)

    MATH  Google Scholar 

  29. Xu, L., Cao, T.B.: Solutions of complex Fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 15, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  30. Xu, L., Cao, T.B.: Correction to: solutions of complex Fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 17, 1–4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, H.Y., Jiang, Y.Y.: Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables. Rev. R. Acad. Cienc. Exactas. Fís. Nat. Ser. A Mat. RACSAM 116(8), 1–19 (2022)

    MathSciNet  Google Scholar 

  32. Xu, H.Y., Xu, L.: Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients. Anal. Math. Phys. 12(64), 1–21 (2022)

    MathSciNet  MATH  Google Scholar 

  33. Xu, H.Y., Liu, S.Y., Li, Q.P.: Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type. J. Math. Anal. Appl. 483(123641), 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Xu, H.Y., Li, H., Ding, X.: Entire and meromorphic solutions for systems of the differential difference equations. Demonst. Math. 55, 676–694 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (12161074), the Talent Introduction Research Foundation of Suqian University (106-CK00042/028) and the Suqian Sci & Tech Program (2020JJPC11).

Author information

Authors and Affiliations

Authors

Contributions

HYX completed the main part of this article, HYX, YHX and XLL corrected the main theorems. All authors gave final approval for publication.

Corresponding author

Correspondence to Hong Yan Xu.

Ethics declarations

Conflict of interest

The authors declare that none of the authors have any conflict of interest in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H.Y., Xu, Y.H. & Liu, X.L. On solutions for several systems of complex nonlinear partial differential equations with two variables. Anal.Math.Phys. 13, 47 (2023). https://doi.org/10.1007/s13324-023-00811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00811-z

Keywords

Mathematics Subject Classification

Navigation