Skip to main content
Log in

Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by Riemann–Hilbert method

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we investigate a class of linear complete singular integro-differential equations of convolution type with Fredholm integral operator in the function class \(\{0\}\). To prove the existence of solution for the equations, we first propose the regularization method of complex integral equations, and then we establish the theory of Noether solvability. By using the relation between Cauchy type integral and Fourier integral, we transform such equations into the complete singular integral equations, and on this basis we transform further the obtained equations into boundary value problems of holomorphic functions with node (i.e., discontinuous coefficients). The holomorphic solution and conditions of solvability are obtained via the method of regularization. Our approach of solving equations is novel and effective, which is different from the classical method. Meanwhile, we also discuss the asymptotic stability of solutions. Therefore, this article has a great significance for the study of developing functional analysis, complex analysis, and differential-integral equations, also provides theoretical support for the study of engineering mechanics, elastic mechanics and mathematical Modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Duduchava, R.V.: Integral equations of convolution type with discontinuous coefficients. Math. Nachr. 79, 75–78 (1977)

    MathSciNet  Google Scholar 

  2. Lu, J.K.: Boundary Value Problems for Analytic Functions. World Sci, Singapore (2004)

    Google Scholar 

  3. Muskhelishvilli, N.I.: Singular Integral Equations. NauKa, Moscow (2002)

    Google Scholar 

  4. Litvinchuk, G.S.: Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift. Kluwer Academic Publishers, London (2004)

    Google Scholar 

  5. Bologna, M.: Asymptotic solution for first and second order linear Volterra integro-differential equations with convolution kernels. J. Phys. A: Math. Theor. 43, 375–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. De-Bonis, M.C., Laurita, C.: Numerical solution of systems of Cauchy singular integral equations with constant coefficients. Appl. Math. Comput. 219, 1391–1410 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Miao, C.X., Zhang, J.Y., Zheng, J.Q.: Scattering theory for the radial \({\dot{H}}^{\frac{1}{2}}\)-critical wave equation with a cubic convolution. J. Diff. Equ. 259, 7199–7237 (2015)

    Article  MATH  Google Scholar 

  8. Li, P.R., Ren, G.B.: Some classes of equations of discrete type with harmonic singular operator and convolution. Appl. Math. Comput. 284, 185–194 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Li, P.R.: Some classes of singular integral equations of convolution type in the class of exponentially increasing functions. J. Inequal. Appl. 2017, 307 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, P.R.: Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions. Appl. Math. Comput. 344–345, 116–127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, P.R.: Two classes of linear equations of discrete convolution type with harmonic singular operators. Complex Var. Elliptic Equ. 61(1), 67–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, P.R., Ren, G.B.: Solvability of singular integro-differential equations via Riemann–Hilbert problem. J. Diff. Equ. 265, 5455–5471 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, H., Shen, J.H.: Reproducing kernel method of solving singular integral equation with cosecant kernel. J. Math. Anal. Appl. 348(1), 308–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wöjcik, P., Sheshko, M.A., Sheshko, S.M.: Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel. Diff. Equ. 49(2), 198–209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khosravi, H., Allahyari, R., Haghighi, A.: Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness. Appl. Math. Comput. 260, 140–147 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Colliander, J., Keel, M., Staffilani, G.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation. Invent. Math. 181(1), 39–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tuan, N.M., Thu-Huyen, N.T.: The solvability and explicit solutions of two integral equations via generalized convolutions. J. Math. Anal. Appl. 369, 712–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, P.R.: Singular integral equations of convolution type with reflection and translation shifts. Numer. Funct. Anal. Opt. 40(9), 1023–1038 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakazi, T., Yamamoto, T.: Normal singular integral operators with Cauchy kernel. Integral Equ. Oper. Theor. 78, 233–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, P.R.: Non-normal type singular integral-differential equations by Riemann-Hilbert approach. J. Math. Anal. Appl. 483(2), 123643 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, Y., Xu, Y.: Fast Fourier–Galerkin methods for solving singular boundary integral equations: numerical integration and precondition. J. Comput. Appl. Math. 234, 2792–2807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eelbode, D., Sommen, F.: The inverse Radon transform and the fundamental solution of the hyperbolic Dirac equation. Math. Z. 247, 733–745 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, W.X.: Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Part. Diff. Equ. Appl. Math. 4, 100190 (2021)

    Google Scholar 

  25. Hu, B., Xia, T., Ma, W.: Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line. Appl. Math. Comput. 332, 148–159 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Guo, B., Liu, N., Wang, Y.: Long-time asymptotics for the Hirota equation on the half-line. Nonlinear Anal. 174, 118–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Arruda, L.K., Lenells, J.: Long-time asymptotics for the derivative nonlinear Schrödinger equation on the half-line. Nonlinearity 30, 4141–4172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hongler, C., Smirnov, S.: The energy density in the planar Ising model. Acta Math. 211(2), 191–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, P.R.: Linear BVPs and SIEs for generalized regular functions in Clifford analysis. J. Funct. Spaces 2018, 10 (2018)

    MathSciNet  Google Scholar 

  30. Gong, Y.F., Leong, L.T., Qiao, T.: Two integral operators in Clifford analysis. J. Math. Anal. Appl. 354, 435–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, P.R.: Solvability theory of convolution singular integral equations via Riemann–Hilbert approach. J. Comput. Appl. Math. 370(2), 112601 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, P.R.: Generalized boundary value problems for analytic functions with convolutions and its applications. Math. Meth. Appl. Sci. 42, 2631–2645 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, P.R., Zhang, N., Wang, M.C., Zhou, Y.J.: An efficient method for singular integral equations of non-normal type with two convolution kernels. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.2009817

    Article  Google Scholar 

  34. Li, P.R., Bai, S.W., Sun, M., Zhang, N.: Solving convolution singular integral equations with reflection and translation shifts utilizing Riemann-Hilbert approach. J. Appl. Anal. Comput. 2022. https://doi.org/10.11948/20210214

  35. Li, P.R.: Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel. Acta Appl. Math. (2022). https://doi.org/10.1007/s10440-022-00522-w

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions and comments, which helped to improve the quality of the paper.

Funding

This work is supported financially by the National Natural Science Foundation of China (11971015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingrun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P. Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by Riemann–Hilbert method. Anal.Math.Phys. 12, 146 (2022). https://doi.org/10.1007/s13324-022-00759-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00759-6

Keywords

Mathematical Subject Classification

Navigation