Skip to main content
Log in

On the number of concentrating solutions of a fractional Schrödinger–Poisson system with doubly critical growth

  • Original Paper
  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the existence, multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson system with doubly critical growth

$$\begin{aligned} {\left\{ \begin{array}{ll}\displaystyle \varepsilon ^{2s}(-\Delta )^{s}u+V( x)u= f(u)+\phi |u|^{2^*_s-3}u+|u|^{2^{*}_{s}-2}u, &{} \quad x \in {\mathbb {R}}^{3},\\ \varepsilon ^{2s}(-\Delta )^{s}\phi =|u|^{2^*_s-1}, &{} \quad x \in {\mathbb {R}}^{3},\\ \end{array}\right. } \end{aligned}$$

where \(s \in (\frac{3}{4},1)\), \(\varepsilon \) is a positive parameter, \(2^*_s = \frac{6}{3-2s}\) is the fractional critical Sobolev exponent, \((-\Delta )^s\) is the fractional Laplacian operator, and f is a continuous nonlinearity with subcritical growth. With the help of Nehari manifold and Ljusternik–Schnirelmann theory, we investigate the relation between the number of positive solutions with the topology of the set where the potential attains its minimum value for small values of the parameter \(\varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statements

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \({{\mathbb{R}}}^N\) via penalization method. Calc. Var. Partial Differ. Equ. 55(3), Art. 47 (2016)

  2. Alves, C.O., Carrio, P.C., Medeiros, E.S.: Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions. Abstr. Appl. Anal. 2004, 251–268 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson equation. Commun. Contemp. Math. 10, 1–14 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V.: Multiplicity and concentration results for a class of critical fractional Schrödinger–Poisson systems via penalization method. Commun. Contemp. Math. 22(01), 1850078 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pura Appl. (4) 196(6), 2043C2062 (2017)

    MathSciNet  Google Scholar 

  7. Ambrosio, V.: Nonlinear fractional Schrödinger equations in \({{\mathbb{R}}}^N\). In: Frontiers in Elliptic and Parabolic Problems. Birkhäuser/Springer, Cham (2021)

  8. Ambrosio, V.: Periodic solutions for critical fractional problems. Calc. Var. Partial Differ. Equ.57(2), Paper No. 45 (2018)

  9. Ambrosio, V.: A multiplicity result for a fractional \(p\)-Laplacian problem without growth conditions. Riv. Math. Univ. Parma (N.S.) 9, 53–71 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Azzollini, A., Pomponio, A.: Ground state solution for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 346, 90–108 (2008)

    MATH  Google Scholar 

  11. Azzollini, A., d’Avenia, P., Vaira, G.: Generalized Schrödinger–Newton system in dimension \(N \ge 3\): critical case. J. Math. Anal. Appl. 449, 531–552 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Barrios, B., Colorado, E., de Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Brasco, L., Squassina, M., Yang, Y.: Global compactness results for nonlocal problems. Discrete Contin. Dyn. Syst. Ser. S 11, 391–424 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    MATH  Google Scholar 

  19. Dávila, J., del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8, 1165–1235 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Dávila, J., Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)

    MATH  Google Scholar 

  21. Del Pino, M., Felmer, P.L.: Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    MATH  Google Scholar 

  22. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({{\mathbb{R}}}^n,\) Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa (2017). viii+152 pp

  23. Dipierro, S., Medina, M., Peral, I., Valdinoci, E.: Bifurcation results for a fractional elliptic equation with critical exponent in \({{\mathbb{R}}}^n\). Manuscr. Math. 153, 183–230 (2017)

    MATH  Google Scholar 

  24. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hithiker’s guide to the frctional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    MathSciNet  MATH  Google Scholar 

  26. Feng, X.: Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems. Z. Angew. Math. Phys. 71(5), Paper No. 154 (2020)

  27. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    MATH  Google Scholar 

  28. He, X.: Positive solutions for fractional Schrödinger–Poisson systems with doubly critical exponents, Appl. Math. Lett. 120 (2021). https://doi.org/10.1016/j.aml.2021.107190

  29. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. (2012). https://doi.org/10.1063/1.3683156

  30. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. Partial Differ. Equ. 55(4), Paper No. 91 (2016)

  31. He, Y., Li, G.: Standing waves for a class of Schrödinger–Poisson systems in \({{\mathbb{R}}}^3\) involving critical Sobolev exponents. Ann. Acad. Sci. Fenn. Math. 40, 729–766 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    MathSciNet  Google Scholar 

  34. Li, F., Li, Y., Shi, J.: Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term. Calc. Var. Partial Differ. Eqs. 56, 134 (2017). https://doi.org/10.1007/s00526-017-1229-2

    Article  MATH  Google Scholar 

  35. Li, F., Li, Y., Shi, J.: Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent. Commun. Contemp. Math. 16, 1450036 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Liu, H.: Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent. Nonlinear Anal. RWA 32, 198–212 (2016)

    MATH  Google Scholar 

  37. Liu, Z., Zhang, J.: Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth. ESAIM Control Optim. Calc. Var. 23, 1515–1542 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Li, N., He, X.: Existence and multiplicity results for some Schrödinger–Poisson system with critical growth. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2020.124071

  39. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  40. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, Berlin (1989)

    MATH  Google Scholar 

  41. Molica Bisci, G., Radulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, vol. 162. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  42. Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    MathSciNet  MATH  Google Scholar 

  43. Murcia, E., Siciliano, G.: Positive semiclassical states for a fractional Schrödinger–Poisson system. Differ. Integral Equ. 30, 231–258 (2017)

    MATH  Google Scholar 

  44. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(1992), 270–291 (1992)

    MathSciNet  MATH  Google Scholar 

  46. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({{\mathbb{R}}}^N\). J. Math. Phys. 54, 031501 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

    MATH  Google Scholar 

  50. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Montreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 2314–2351. Inernational Press, Boston (2010)

    Google Scholar 

  52. Zhang, J., doÓ, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence of multiple positive solutions for Schrödinger–Poisson systems with critical growth. Z. Angew. Math. Phys. 66, 2441–2471 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Zhao, L., Zhao, F.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Yang, Z., Yu, Y., Zhao, F.: Concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system involving critical exponent. Commun. Contemp. Math. 21(06), 1850027 (2019)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading the manuscript and giving valuable comments. This work is supported by NSFC (11771468, 11971027, 12171497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., He, X. On the number of concentrating solutions of a fractional Schrödinger–Poisson system with doubly critical growth. Anal.Math.Phys. 12, 59 (2022). https://doi.org/10.1007/s13324-022-00675-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-022-00675-9

Keywords

Mathematics Subject Classification

Navigation