Skip to main content
Log in

On a Schrödinger system arizing in nonlinear optics

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the nonlinear Schrödinger system

$$\begin{aligned} \left\{ \begin{array}{lllll} \displaystyle iu_t+\Delta u-u+\left( \frac{1}{9}|u|^2+2|w|^2\right) u+\frac{1}{3}{\overline{u}}^2w=0,\\ i\displaystyle \sigma w_t+\Delta w-\mu w+(9|w|^2+2|u|^2)w+\frac{1}{9}u^3=0, \end{array}\right. \end{aligned}$$

for \((x,t)\in {\mathbb {R}}^n\times {\mathbb {R}}\), \(1\le n\le 3\) and \(\sigma ,\mu >0\). This system models the interaction between an optical beam and its third harmonic in a material with Kerr-type nonlinear response. We prove the existence of ground state solutions, analyse its stability, and establish local and global well-posedness results as well as several criteria for blow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angulo, J., Pastor, A.: Stability of periodic optical solitons for a nonlinear Schrödinger system. Proc. R. Soc. Edinb. 139A, 927–959 (2009)

    MATH  Google Scholar 

  2. Bégout, P.: Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation. Adv. Math. Sci. Appl. 12, 817–827 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I: Existence of a ground state, A.R.M.A. 82, 313–345 (1983)

  4. Boyd, R.W.: Nonlinear Optics. Academic Press, Elsevier (2008)

    Google Scholar 

  5. Buryak, A.V., Kivshar, Y.S.: Solitons due to second harmonic generation. Phys. Lett. A 197, 407–412 (1997)

    Article  MathSciNet  Google Scholar 

  6. Cazenave, Th.: Semilinear Schrödinger Equations, Courant Lectures Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

  7. Corcho, A.J., Correia, S., Oliveira, F., Silva, J.D.: On a nonlinear Schrödinger system arising in quadratic media, arXiv:1703.10509v2

  8. Correia, S.: Ground-states for systems of \(M\) coupled semilinear Schrödinger equations with attraction-repulsion effects: characterization and perturbation results, arXiv:1506.07758

  9. Gilbarg, D., Trundiger, N.: Nonlinear Partial Differential Equations of Second Order, Classics in Mathematics, Springer (1998)

  10. Gonçalves Ribeiro, J.M.: Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field. Annales de l’I.H.P. 54, 403–433 (1991)

  11. Grillakis, M., Shatah, M., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  12. Hardy, H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  13. Kivshar, Y.S., Sukhorukov, A.A., Ostrovskaya, E.A., Alexander, T.J., Bang, O., Saltiel, S.M., Balslev Clausen, C., Christiansen, P.L.: Multi-component optical solitary waves. Physica A 288, 152–173 (2000)

  14. Kivshar, Y.S.: Bright and dark spatial solitons in non-Kerr media. Opt. Quantum Eletron. 30, 571–614 (1998)

    Article  Google Scholar 

  15. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitex, Springer, New York (2009)

  16. Lions, P.L.: The concentration-compactness principle in the calculus of variations, Part 1. Ann. Inst. H. Poincaré 1, 109–145 (1984)

    Article  Google Scholar 

  17. Pastor, A.: Weak concentration and wave operator for a 3D coupled nonlinear Schrödinger system. J. Math. Phys. 56, 021507-1 to 021507-18 (2015)

  18. Salgueiro, J.R., Sukhorukov, A.A., Kivshar, Y.S.: Spatial optical solitons supported by mutual focusing. Opt. Lett. 28, 1457–1459 (2003)

    Article  Google Scholar 

  19. Sammut, A.R., Buryak, A.V., Kivshar, Y.S.: Modification of solitary waves by third-harmonic generation. Opt. Lett. 22, 1385–1387 (1997)

    Article  Google Scholar 

  20. Sammut, A.R., Buryak, A.V., Kivshar, Y.S.: Bright and dark solitary waves in the presence of the third-harmonic generation. J. Opt. Soc. Am. B 15, 1488–1496 (1998)

    Article  MathSciNet  Google Scholar 

  21. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  22. Stuart, C.A.: A variational approach to bifurcation in \(L^p\) on an unbounded symmetrical domain. Math. Ann. 263, 51–59 (1983)

    Article  MathSciNet  Google Scholar 

  23. Weinstein, M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. XXXIX, 51–68 (1986)

  24. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  Google Scholar 

  25. Weinstein, M.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was developed in the frame of the CAPES-FCT convenium Equações de evolução dispersivas. Ademir Pastor would like to thank the kind hospitality of Instituto Superior Técnico, Universidade de Lisboa. Filipe Oliveira was partially supported by the Project CEMAPRE/REM - UIDB/05069/2020 and PTDC/MAT-PUR/1788/2020 financed by FCT/MCTES through national funds. Ademir Pastor was partially supported by CNPq/Brazil Grants 402849/2016-7 and 303762/2019-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Oliveira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, F., Pastor, A. On a Schrödinger system arizing in nonlinear optics. Anal.Math.Phys. 11, 123 (2021). https://doi.org/10.1007/s13324-021-00554-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00554-9

Keywords

Mathematics Subject Classification

Navigation