On Hilbert and Riemann problems for generalized analytic functions and applications

Abstract

The research of the Dirichlet problem with arbitrary measurable data for harmonic functions is due to the famous dissertation of Luzin. The present paper is devoted to various theorems on the existence of nonclassical solutions of the Hilbert and Riemann boundary value problems with arbitrary measurable data for generalized analytic functions by Vekua and the corresponding applications to the Neumann and Poincare problems for generalized harmonic functions. Our approach is based on the geometric (theoretic-functional) interpretation of boundary values in comparison with the classical operator approach in PDE. First of all, here it is proved theorems on the existence of solutions to the Hilbert boundary value problem with arbitrary measurable data for generalized analytic functions in arbitrary Jordan domains with rectifiable boundaries in terms of the natural parameter and angular (nontangential) limits, moreover, in arbitrary Jordan domains in terms of harmonic measure and principal asymptotic values. Moreover, it is established the existence theorems on solutions for the appropriate boundary value problems of Hilbert and Riemann with arbitrary measurable data along the so-called Bagemihl–Seidel systems of Jordan arcs terminating at the boundary in arbitrary domains whose boundaries consist of finite collections of rectifiable Jordan curves. On this basis, it is established the corresponding existence theorems for the Poincare boundary value problem on the directional derivatives and, in particular, for the Neumann problem with arbitrary measurable data to the Poisson equations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Bagemihl, F.: Curvilinear cluster sets of arbitrary functions. Proc. Natl. Acad. Sci. USA 41, 379–382 (1955)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bagemihl, F., Seidel, W.: Regular functions with prescribed measurable boundary values almost everywhere. Proc. Natl. Acad. Sci. USA 41, 740–743 (1955)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Begehr, H.: Complex Analytic Methods for Partial Differential Equations. An Introductory Text. World Scientific Publishing Co., Inc., River Edge, NJ (1994)

    Google Scholar 

  4. 4.

    Begehr, H., Wen, GCh.: Nonlinear Elliptic Boundary Value Problems and Their Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 80. Longman, Harlow (1996)

    Google Scholar 

  5. 5.

    Duren, P.L.: Theory of Hp spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)

    Google Scholar 

  6. 6.

    Federer, H.: Geometric Measure Theory. Springer-Verlag, Berlin (1969)

    Google Scholar 

  7. 7.

    Gakhov, F.D.: Boundary Value Problems. Dover Publications. Inc., New York (1990)

    Google Scholar 

  8. 8.

    Gehring, F.W.: On the Dirichlet problem. Mich. Math. J., 3, 201 (1955–1956)

  9. 9.

    Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. Translations of Mathematical Monographs, vol. 26. American Mathematical Society, Providence, RI (1969)

    Google Scholar 

  10. 10.

    Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Springer-Verlag, Berlin (1986)

    Google Scholar 

  11. 11.

    Gutlyanskii, V., Ryazanov, V., Yefimushkin, A.: On the boundary value problems for quasiconformal functions in the plane. Ukr. Mat. Visn. 12(3), 363–389 (2015). Transl. in J. Math. Sci. (N.Y.) 214, no. 2, 200-219 (2016)

    MATH  Google Scholar 

  12. 12.

    Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press. Oxford University Press, New York (1993)

    Google Scholar 

  13. 13.

    Hilbert, D.: Über eine Anwendung der Integralgleichungen auf eine Problem der Funktionentheorie. Verhandl. des III Int. Math. Kongr, Heidelberg (1904)

    Google Scholar 

  14. 14.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators. V. I. Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer-Verlag, Berlin (1983)

    Google Scholar 

  15. 15.

    Koosis, P.: Introduction to \(H^p\) Spaces, Cambridge Tracts in Mathematics, vol. 115. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  16. 16.

    Krasnosel’skii, M.A., Zabreiko, P.P., Pustyl’nik, E.I., Sobolevskii, P.E.: Integral Operators in Spaces of Summable Functions. Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis. Noordhoff International Publishing, Leiden (1976)

    Google Scholar 

  17. 17.

    Luzin, N.N.: K osnovnoi theoreme integral’nogo ischisleniya [On the main theorem of integral calculus]. Mat. Sb. 28, 266–294 (1912). (in Russian)

    Google Scholar 

  18. 18.

    Luzin, N.N.: Integral i trigonometriceskii ryady [Integral and trigonometric series], Dissertation, Moskwa (1915) (in Russian)

  19. 19.

    Luzin, N.N.: Integral i trigonometriceskii ryady [Integral and trigonometric series], Editing and commentary by N.K. Bari and D.E. Men’shov. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad (1951) (in Russian)

  20. 20.

    Luzin, N.: Sur la notion de l’integrale. Annali Mat. Pura e Appl. 26(3), 77–129 (1917)

    Article  Google Scholar 

  21. 21.

    Nevanlinna, R.: Eindeutige analytische Funktionen. Michigan, Ann Arbor (1944)

    Google Scholar 

  22. 22.

    Noshiro, K.: Cluster Sets. Springer-Verlag, Berlin (1960)

    Google Scholar 

  23. 23.

    Muskhelishvili, N.I.: Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics. Dover Publications Inc., New York (1992)

    Google Scholar 

  24. 24.

    Pommerenke, Ch.: Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299. Springer-Verlag, Berlin (1992)

    Google Scholar 

  25. 25.

    Priwalow, I.I.: Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, vol. 25. Deutscher Verlag der Wissenschaften, Berlin (1956)

    Google Scholar 

  26. 26.

    Ransford, T.: Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  27. 27.

    Ryazanov, V.: On the Riemann-Hilbert problem without index. Ann. Univ. Buchar. Math. Ser. 5(LXIII)(1), 169–178 (2014)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Ryazanov, V.: Infinite dimension of solutions of the Dirichlet problem. Open Math. (the former Central Eur. J. Math.) 13(1), 348–350 (2015)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Ryazanov, V.: On Neumann and Poincare problems for Laplace equation. Anal. Math. Phys. 7(3), 285–289 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Ryazanov, V.: The Stieltjes integrals in the theory of harmonic functions. Zap. Nauchn. Sem.S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 467, Issledovaniya po Lineinym Operatoram i Teoriii Funktsii 46, 151–168 (2018). transl. in J. Math. Sci. 243, no. 6, 922–933 (2019)

  31. 31.

    Ryazanov, V.: On Hilbert and Riemann problems. An alternative approach. Ann. Univ. Buchar. Math. Ser. 6(LXIV)(2), 237–244 (2015)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Ryazanov, V.: Neumann and Poincare problems for Poisson’s equations with measurable data. arXiv: 1910.12613 [math.CV], 19 Dec 2019, 21 pp. (2019)

  33. 33.

    Saks, S.: Theory of the Integral, Warsaw (1937). Dover Publications Inc., New York (1964)

    Google Scholar 

  34. 34.

    Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, vol. 7. AMS, Providence, RI (1963)

    Google Scholar 

  35. 35.

    Trogdon, Th, Olver, Sh: Riemann–Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2016)

    Google Scholar 

  36. 36.

    Vekua, I.N.: Generalized Analytic Functions. Addison-Wesley Publishing Co., Inc, Reading, MA (1962)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants of Ministry of Education and Science of Ukraine, project number is 0119U100421.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ryazanov.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

The memory of Professor Bogdan Bojarski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, V. On Hilbert and Riemann problems for generalized analytic functions and applications. Anal.Math.Phys. 11, 5 (2021). https://doi.org/10.1007/s13324-020-00440-w

Download citation

Keywords

  • Poisson equations
  • Hilbert
  • Neumann
  • Poincare and Riemann boundary value problems
  • Generalized analytic and harmonic functions

Mathematics Subject Classification

  • Primary 30C62
  • 31A05
  • 31A20
  • 31A25
  • 31B25
  • 35J61
  • Secondary 30E25
  • 31C05
  • 34M50
  • 35F45
  • 35Q15