Skip to main content
Log in

On matrix-valued wave packet frames in \(L^2({\mathbb {R}}^d, {\mathbb {C}}^{s\times r})\)

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study matrix-valued wave packet frames for the matrix-valued function space \(L^2({\mathbb {R}}^d, {\mathbb {C}}^{s\times r})\). An interplay between matrix-valued wave packet frames and its associated atomic wave packet frames is discussed. This is inspired by examples which show that frame properties cannot be carried from matrix-valued wave packet scaling functions to its associated atomic wave packet scaling functions and vice versa. Construction of matrix-valued wave packet frames for \(L^2({\mathbb {R}}^d, {\mathbb {C}}^{s\times r})\) from corresponding atomic wave packet frames for \(L^2({\mathbb {R}}^d)\) (and conversely) are given. Some special classes of matrix-valued scaling functions are given. A characterization of tight matrix-valued wave packet frames in terms of orthogonality of Bessel sequences has been obtained. Further, we provide a characterization of superframes which can generate matrix-valued frames. Finally, a Paley-Wiener type perturbation result with respect to matrix-valued wave packet scaling functions is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antolín, A.S., Zalik, R.A.: Matrix-valued wavelets and multiresolution analysis. J. Appl. Funct. Anal. 7(1–2), 13–25 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Balan, R.: Multiplexing of signals using superframes. In: SPIE Wavelets Applications, Vol. 4119 of Signal and Image Processing VIII, 118–129 (2000)

  3. Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. Contemp. Math. 247, 29–41 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bhatt, G., Johnson, B.D., Weber, E.: Orthogonal wavelet frames and vector-valued wavelet transforms. Appl. Comput. Harmon. Anal. 23, 215–234 (2007)

    Article  MathSciNet  Google Scholar 

  5. Casazza, P.G., Kutyniok, G.: Finite Frames: Theory and Applications. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  6. Casazza, P.G., Christensen, O.: Perturbations of operators and applications to frame theory. J. Fourier Anal. Appl. 3, 543–557 (1997)

    Article  MathSciNet  Google Scholar 

  7. Christensen, O., Heil, C.: Perturbations of Banach frames and atomic decompositions. Math. Nach. 185, 33–47 (1997)

    Article  MathSciNet  Google Scholar 

  8. Christensen, O., Rahimi, A.: Frame properties of wave packet systems in \(L^2({\mathbb{R}}^d)\). Adv. Comput. Math. 29, 101–111 (2008)

    Article  MathSciNet  Google Scholar 

  9. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, Basel (2016)

    MATH  Google Scholar 

  10. Christensen, O., Hasannasab, M., Lemvig, J.: Explicit constructions and properties of generalized shift-invariant systems in \(L^2({\mathbb{R}})\). Adv. Comput. Math. 43, 443–472 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cordoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equ. 3(11), 979–1005 (1978)

    Article  MathSciNet  Google Scholar 

  12. Czaja, W., Kutyniok, G., Speegle, D.: The geometry of sets of prameters of wave packets. Appl. Comput. Harmon. Anal. 20, 108–125 (2006)

    Article  MathSciNet  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  14. Deepshikha, Vashisht, L.K.: A note on discrete frames of translates in \({\mathbb{C}}^N\). TWMS J. Appl. Eng. Math. 6(1), 143–149 (2016)

  15. Deepshikha, Vashisht, L.K.: Extension of Weyl-Heisenberg wave packet Bessel sequences to dual frames in \(L^2({\mathbb{R}})\). J. Class. Anal. 8(2), 131–145 (2016)

  16. Deepshikha, Vashisht, L.K.: Extension of Bessel sequences to dual frames in Hilbert spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79(2), 71–82 (2017)

  17. Deepshikha, Vashisht, L.K.: Necessary and sufficient conditions for discrete wavelet frames in \({\mathbb{C}}^N\). J. Geom. Phys. 117, 134–143 (2017)

  18. Deepshikha, Vashisht, L.K.: Vector-valued (super) weaving frames. J. Geom. Phys. 134, 48–57 (2018)

  19. Ding, Dao-Xin: Generalized continuous frames constructed by using an iterated function system. J. Geom. Phys. 61, 1045–1050 (2011)

    Article  MathSciNet  Google Scholar 

  20. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  21. de Gosson, M.: Hamiltonian deformations of Gabor frames: first steps. Appl. Comput. Harmon. Anal. 38(2), 196–221 (2014)

    Article  MathSciNet  Google Scholar 

  22. de Gosson, M.: The canonical group of transformations of a Weyl-Heisenberg frame; applications to Gaussian and Hermitian frames. J. Geom. Phys. 114, 375–383 (2017)

    Article  MathSciNet  Google Scholar 

  23. de Gosson, M., Gröchenig, K., Romero, J.L.: Stability of Gabor frames under small time Hamiltonian evolutions. Lett. Math. Phys. 106(6), 799–809 (2016)

    Article  MathSciNet  Google Scholar 

  24. Favier, S.J., Zalik, R.A.: On the stability of frames and Riesz bases. Appl. Comput. Harmon. Anal. 2(2), 160–173 (1995)

    Article  MathSciNet  Google Scholar 

  25. Gabor, D.: Theory of communication. J. Inst. Elect. Eng. 93, 429–457 (1946)

    Google Scholar 

  26. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Basel (2000)

    MATH  Google Scholar 

  27. Gröchenig, K., Lyubarskii, Y.: Gabor (super) frames with Hermite functions. Math. Ann. 345(2), 267–286 (2009)

    Article  MathSciNet  Google Scholar 

  28. Han, D., Larson, D.R.: Frames, Bases and Group Representations. Mem. Am. Math. Soc. 147, x+94 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)

    Article  MathSciNet  Google Scholar 

  30. Hernández, E., Labate, D., Weiss, G., Wilson, E.: Oversampling, quasi-affine frames and wave packets. Appl. Comput. Harmon. Anal. 16, 111–147 (2004)

    Article  MathSciNet  Google Scholar 

  31. Jyoti, Vashisht, L.K.: On WH-packets of matrix-malued wave packet frames in \(L^2({\mathbb{R}}^d, {\mathbb{C}}^{s\times r})\). Int. J. Wavelets Multiresolut. Inf. Process. 16(3), 1850022 (2018)

  32. Jyoti, Deepshikha, Vashisht, L.K., Verma, G.: Sums of matrix-valued wave packet frames in \(L^2({\mathbb{R}}^d, {\mathbb{C}}^{s\times r})\). Glas. Mat. Ser. III 53(1), 153–177 (2018)

  33. Jyoti, Vashisht, L.K.: \({\cal{K}}\)-Matrix-valued wave packet frames in \(L^2({\mathbb{R}}^d, {\mathbb{C}}^{s\times r})\). Math. Phys. Anal. Geom. 21(3), Art 21 (2018)

  34. Jyoti, Vashisht, L.K., Verma, G., Vrinder: Matrix-valued wave packet Bessel sequences and symmetric frames in \(L^2({\mathbb{R}}^d, {\mathbb{C}}^{s\times r})\). Poincare J. Anal. Appl. 2018(2), 77–96 (2018)

  35. Khattar, G., Vashisht, L.K.: The reconstruction property in Banach spaces generated by matrices. Adv. Pure Appl. Math. 5(3), 151–160 (2014)

    Article  MathSciNet  Google Scholar 

  36. Labate, D., Weiss, G., Wilson, E.: An approach to the study of wave packet systems. Contemp. Math. 345, 215–235 (2004)

    Article  MathSciNet  Google Scholar 

  37. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1932/1945/1955)

  38. Vashisht, L.K., Deepshikha: Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 110, 282–295 (2016)

  39. Walden, A.T., Serroukh, A.: Wavelet analysis of matrix-valued time-series. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458, 157–179 (2002)

    Article  MathSciNet  Google Scholar 

  40. Xia, X.G., Suter, B.W.: Vector-valued wavelets and vector filter banks. IEEE Trans. Signal Process. 44(3), 508–518 (1996)

    Article  Google Scholar 

  41. Xia, X.G.: Orthonormal matrix valued wavelets and matrix Karhunen–Loève expansion. Contemp. Math. 216, 159–175 (1998)

    Article  Google Scholar 

  42. Zalik, R.A.: On MRA Riesz wavelets. Proc. Am. Math. Soc. 135(3), 787–793 (2007)

    Article  MathSciNet  Google Scholar 

  43. Zalik, R.A.: Orthonormal wavelet systems and multiresolution analyses. J. Appl. Funct. Anal. 5(1), 31–41 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Kumar Vashisht.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Jyoti is supported by the Council of Scientific & Industrial Research (CSIR), India, Grant No. 09/045(1374)/2015-EMR-I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, Vashisht, L.K. On matrix-valued wave packet frames in \(L^2({\mathbb {R}}^d, {\mathbb {C}}^{s\times r})\). Anal.Math.Phys. 10, 66 (2020). https://doi.org/10.1007/s13324-020-00417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00417-9

Keywords

Mathematics Subject Classification

Navigation