Skip to main content
Log in

The measure transition problem for meromorphic polar functions

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In very general conditions, meromorphic polar functions (i.e. functions exhibiting some kind of positive or co-positive definiteness) separate the complex plane into horizontal or vertical strips of holomophy and polarity, in each of which they are characterized as integral transforms of exponentially finite measures. These measures characterize both the function and the strip. We study the problem of transition between different holomorphy strips, proving a transition formula which relates the measures on neighbouring strips of polarity. The general transition problem is further complicated by the fact that a function may lose polarity upon strip crossing and in general we cannot expect polarity, or even some specific related form of integral representation, to exist. We show that, even in these cases, a relevant analytical role will be played by exponentially finite signed measures, which we construct and study. Applications to especially significant examples like the \(\Gamma \), \(\zeta \) or Bessel functions are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Askey, R.: Grünbaum’s inequality for Bessel functions. J. Math. Anal. Appl. 293, 122–124 (1973)

    Article  Google Scholar 

  2. Baricz, A.: Generalized Bessel Functions of the First Kind, vol. 1994. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Berg, C., Christensen, J.P., Ressel, P.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)

    MATH  Google Scholar 

  4. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  Google Scholar 

  5. Bisgaard, T., Sasvari, Z.: Characteristic Functions and Moment Problems. Nova Science Publishing, New York (2000)

    MATH  Google Scholar 

  6. Buescu, J., Paixão, A.: Positive definite matrices and integral equations on unbounded domains. Different. Integral Equ. 19(2), 189–210 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Buescu, J., Paixão, A., Garcia, F., Lourtie, I.: Positive-definiteness, integral equations and Fourier transforms. J. Integral Equations Appl. 16(1), 33–52 (2004)

    Article  MathSciNet  Google Scholar 

  8. Buescu, J., Paixão, A.: A linear algebraic approach to holomorphic reproducing kernels in \({{\mathbb{C}}}^n\). Linear Algebra Appl. 412(2–3), 270–290 (2006)

    Article  MathSciNet  Google Scholar 

  9. Buescu, J., Paixão, A.: Positive definite matrices and differentiable reproducing kernel inequalities. J. Math. Anal. Appl. 320, 279–292 (2006)

    Article  MathSciNet  Google Scholar 

  10. Buescu, J., Paixão, A.: Eigenvalues of positive definite integral operators on unbounded intervals. Positivity 10(4), 627–646 (2006)

    Article  MathSciNet  Google Scholar 

  11. Buescu, J., Paixão, A.: Eigenvalue distribution of Mercer-like kernels. Math. Nachr. bf 280(9–10), 984–995 (2007)

    Article  MathSciNet  Google Scholar 

  12. Buescu, J., Paixão, A.: Eigenvalue distribution of positive definite kernels on unbounded domains. Integral Equ. Oper. Theory 57(1), 19–41 (2007)

    Article  MathSciNet  Google Scholar 

  13. Buescu, J., Paixão, A.: On differentiability and analyticity of positive definite functions. J. Math. Anal. Appl. 375(1), 336–341 (2011)

    Article  MathSciNet  Google Scholar 

  14. Buescu, J., Paixão, A.: Real and complex variable positive definite functions. São Paulo J. Math. Sci. 6(2), 155–169 (2012)

    Article  MathSciNet  Google Scholar 

  15. Buescu, J., Paixão, A.: Complex variable positive definite functions. Complex Anal. Oper. Theory 8(4), 937–954 (2014)

    Article  MathSciNet  Google Scholar 

  16. Buescu, J., Paixão, A., Symeonides, A.: Complex positive definite functions on strips. Complex Anal. Oper. Theory 11(3), 627–649 (2017)

    Article  MathSciNet  Google Scholar 

  17. Buescu, J., Paixão, A., Oliveira, C.: Propagation of regularity and positive definiteness: a constructive approach. Z. Anal. Anwend. 37(1), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  18. Buescu, J., Paixão, A.: Positive-definiteness and integral representations for special functions. Positivity, online first (2020). https://doi.org/10.1007/s11117-020-00784-4

  19. Devinatz, A.: Integral representations of positive definite functions. Trans. Am. Math. Soc. 74, 56–77 (1953)

    Article  MathSciNet  Google Scholar 

  20. Devinatz, A.: Integral representations of positive definite functions II. Trans. Am. Math. Soc. 77, 455–480 (1954)

    Article  MathSciNet  Google Scholar 

  21. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Revised edition Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills (1968)

  22. Graczyk, P., Loeb, J.: Bochner and Schoenberg theorems on symmetric spaces in the complex case. Bull. Soc. Math. France 122(4), 571–590 (1994)

    Article  MathSciNet  Google Scholar 

  23. Kosaki, H.: Positive definiteness of functions with applications to Operator Norm Inequalities. Mem. Am. Math. Soc. 212 (2011)

  24. Jorgensen, P., Pedersen, S., Tian, F.: Extensions of Positive Definite Functions. Applications and Their Harmonic Analysis. Lecture Notes in Mathematics, vol. 2160. Springer, Berlin (2016)

    Book  Google Scholar 

  25. Loeb, J., Youssfi, E.: Fonctions holomorphes définies positives sur les domaines tubes. C. R. Math. Acad. Sci. Paris 343(2), 87–90 (2006)

    Article  MathSciNet  Google Scholar 

  26. Lukacs, E.: Characteristic Functions, 2nd edn. Griffin and Co., New York (1970)

    MATH  Google Scholar 

  27. Menegatto, V., Peron, A.P.: Positive Definite Kernels on Complex Spheres. J. Math. Anal. Appl. 254(1), 219–232 (2001)

    Article  MathSciNet  Google Scholar 

  28. Menegatto, V., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006)

    Article  MathSciNet  Google Scholar 

  29. Nakamura, T.: A quasi-infinitely divisible characteristic function and its exponentiation. Statist. Probab. Lett. 83(10), 2256–2259 (2013)

    Article  MathSciNet  Google Scholar 

  30. Nakamura, T.: A modified Riemann zeta distribution in the critical strip. Proc. Am. Math. Soc. 143(2), 897–905 (2015)

    Article  MathSciNet  Google Scholar 

  31. Nakamura, T.: A complete Riemann zeta distribution and the Riemann hypothesis. Bernoulli 21(1), 604–617 (2015)

    Article  MathSciNet  Google Scholar 

  32. Neuman, E.: Inequalities involving Bessel functions of the first kind. J. Inequal. Pure Appl. Mat 5(4), 4

  33. Oliveira, C.P.: Reproducing properties of holomorphic kernels on balls of \({\mathbb{C}}^q\). Numer. Funct. Anal. Optim. 39(12), 1229–1247 (2018)

    Article  MathSciNet  Google Scholar 

  34. Sasvari, Z.: Positive Definite and Definitizable Functions. Mathematical Topics, vol. 2. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  35. Sasvari, Z.: Multivariate Characteristic and Correlation Functions. De Gruyter Studies in Mathematics, vol. 50. Walter de Gruyter & Co., Berlin (2013)

    Book  Google Scholar 

  36. Selinger, V.: Geometric properties of normalized Bessel functions. Pure Math. Appl. 6, 273–277 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press, Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  38. Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge U. P, Cambridge (1944)

    MATH  Google Scholar 

  39. Whittaker, E., Watson, G.: A Course in Modern Analysis, 4th edn. Cambridge U. P, Cambridge (1996)

    Book  Google Scholar 

  40. Widder, D.: Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral. Bull. Am. Math. Soc. 40(4), 321–326 (1934)

    Article  MathSciNet  Google Scholar 

  41. Youssfi, E.: Harmonic analysis on conelike bodies and holomorphic functions on tube domains. J. Funct. Anal. 155(2), 381–435 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the discussions with Prof. Paulo Gil, whose editorial suggestions greatly improved readability of the paper, and the valuable comments from the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buescu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author acknowledges partial support by Fundação para a Ciência e Tecnologia, UID/MAT/04561/2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buescu, J., Paixão, A.C. The measure transition problem for meromorphic polar functions. Anal.Math.Phys. 10, 60 (2020). https://doi.org/10.1007/s13324-020-00408-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00408-w

Keywords

Mathematics Subject Classification

Navigation