Skip to main content
Log in

Fractal-type sets in the four-dimensional space using bicomplex and hyperbolic numbers

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the first part of this work we study the set of bicomplex numbers from the point of view of a hyperbolic module. We make use of the partial order defined on the set of hyperbolic numbers. We recall some properties of the hyperbolic geometrical objects that were defined in previous papers. With the help of these notions some fractal-type sets in the four dimensional space are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alpay, D., Luna, M.E., Shapiro, M., Struppa, D.C.: Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis. Series SpringerBriefs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  2. Balankin, A.S.: Physics in space-time with scale-dependent metrics. Phys. Lett. A 377, 1606–1610 (2013)

    Article  MathSciNet  Google Scholar 

  3. Balankin, A.S.: Effective degrees of freedom of a random walk on a fractal. Phys. Rev. E 92, 062146 (2015)

    Article  MathSciNet  Google Scholar 

  4. Balankin, A.S., Bory-Reyes, J., Luna-Elizarrarás, M.E., Shapiro, M.: Cantor-type sets in hyperbolic numbers. Fractals 24(04), 1650051 (2016)

    Article  MathSciNet  Google Scholar 

  5. Eardley, D.M.: Self-similar spacetimes: geometry and dynamics. Commun. Math. Phys. 37, 287–309 (1974)

    Article  MathSciNet  Google Scholar 

  6. He, J.H.: Hilbert cube model for fractal spacetime. Chaos Solitons Fractals 42, 2754–2759 (2009)

    Article  Google Scholar 

  7. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  8. Kumar, R., Saini, H.: Topological bicomplex modules. Adv. Appl. Clifford Algebras 26, 1249–1270 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kocić, Ljubiša M., Matejić, Marjan M.: Contractive Affine transformations of complex plane and applications. Facta Universitatis (NIŠ) Ser. Math. Inform. 21, 65–75 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Lichtenberg, A.J., Liebermann, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, New York (1992)

    Book  Google Scholar 

  11. Luna-Elizarrarás, M.E., Pérez-Regalado, C.O., Shapiro, M.: On linear functionals and Hahn–Banach theorems for hyperbolic and bicomplex modules. Adv. Appl. Clifford Algebras 24(4), 1105–1129 (2014)

    Article  MathSciNet  Google Scholar 

  12. Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C., Vajiac, A.: Bicomplex numbers and their elementary functions. Cubo A Math. J. 14(2), 61–80 (2012)

    Article  MathSciNet  Google Scholar 

  13. Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C., Vajiac, A.: Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers. Frontiers in Mathematics. Springer, Birkhäuser (2015)

    Book  Google Scholar 

  14. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1999)

    Google Scholar 

  15. Nikiel, S.: Iterated Function Systems for Real-Time Image Synthesis. Springer, London (2007)

    MATH  Google Scholar 

  16. Richter, M., Lange, S., Backer, A., Ketzmerick, R.: Visualization and comparison of classical structures and quantum states of four-dimensional maps. Phys. Rev. E 89, 022902 (2014)

    Article  Google Scholar 

  17. Rochon, D.: A generalized Mandelbrot set for bicomplex numbers. Fractals 8(04), 355–368 (2000)

    Article  MathSciNet  Google Scholar 

  18. Shapiro, M., Struppa, D.C., Vajiac, A., Vajiac, M.B.: Hyperbolic numbers and their functions. Anal. Univ. Oradea Fasc. Math. XIX(1), 265–283 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Elena Luna-Elizarrarás.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna-Elizarrarás, M.E., Shapiro, M. & Balankin, A. Fractal-type sets in the four-dimensional space using bicomplex and hyperbolic numbers. Anal.Math.Phys. 10, 13 (2020). https://doi.org/10.1007/s13324-020-00356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00356-5

Keywords

Mathematics Subject Classification

Navigation