Skip to main content
Log in

A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a criterion for a set of eigenfunctions of the one-dimensional Schrödinger operator with distributional potentials and boundary conditions containing the eigenvalue parameter to be a Riesz basis for \({\mathscr {L}}_2(0,\pi )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bari, N.K.: Biorthogonal systems and bases in Hilbert space (Russian). Moskov. Gos. Univ. Učenye Zapiski Matematika 148(4), 69–107 (1951)

    MathSciNet  Google Scholar 

  2. Friedman, B.: Principles and Techniques of Applied Mathematics. Wiley, New York (1956)

    MATH  Google Scholar 

  3. Gel’fand, I.M.: Remark on the work of N. K. Bari, Biorthogonal systems and bases in Hilbert space. (Russian). Moskov. Gos. Univ. Učenye Zapiski Matematika 148(4), 224–225 (1951)

    MathSciNet  Google Scholar 

  4. Guliyev, N.J.: Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary conditions. Inverse Prob. 21(4), 1315–1330 (2005). (arXiv:0803.0566)

    Article  MathSciNet  Google Scholar 

  5. Guliyev, N.J.: Essentially isospectral transformations and their applications. Ann. Mat. Pura Appl. (4), to appear. arXiv:1708.07497

  6. Guliyev, N.J.: On two-spectra inverse problems. submitted. arXiv:1803.02567

  7. Guliyev, N.J.: Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter. J. Math. Phys. 60(6), 063501, 23 pp (2019). arXiv:1806.10459

    Article  MathSciNet  Google Scholar 

  8. Guliyev, N.J.: On extensions of symmetric operators. Oper. Matrices, to appear. arXiv:1807.11865

  9. Hryniv, R.O., Mykytyuk, Ya V.: Transformation operators for Sturm–Liouville operators with singular potentials. Math. Phys. Anal. Geom. 7(2), 119–149 (2004)

    Article  MathSciNet  Google Scholar 

  10. Kerimov, N.B.: Basis properties in \(L_p\) of a Sturm–Liouville operator with spectral parameter in the boundary conditions (Russian). Differ. Uravn. 55(2), 148–157 (2019); English transl. in Differ. Equ. 55(2), 149–158 (2019)

  11. Kerimov, N.B., Aliyev, Y.N.: The basis property in \(L_p\) of the boundary value problem rationally dependent on the eigenparameter. Studia Math. 174(2), 201–212 (2006)

    Article  MathSciNet  Google Scholar 

  12. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, Inc., San Diego (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namig J. Guliyev.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliyev, N.J. A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter. Anal.Math.Phys. 10, 2 (2020). https://doi.org/10.1007/s13324-019-00348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-019-00348-0

Keywords

Mathematics Subject Classification

Navigation