Skip to main content
Log in

Two simple projection-type methods for solving variational inequalities

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study a classical monotone and Lipschitz continuous variational inequality in real Hilbert spaces. Two projection type methods, Mann and its viscosity generalization are introduced with their strong convergence theorems. Our methods generalize and extend some related results in the literature and their main advantages are: the strong convergence and the adaptive step-size usage which avoids the need to know apriori the Lipschitz constant of variational inequality associated operator. Primary numerical experiments in finite and infinite dimensional spaces compare and illustrate the behaviors of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat. Metody. 12, 1164–1173 (1976)

    Google Scholar 

  2. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities, Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Cai, X., Gu, G., He, B.: On the \(O(1/t)\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin (2012)

    MATH  Google Scholar 

  6. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradientmethod for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2011)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 56, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  11. Dong, Q.L., Gibali, A., Jiang, D., Ke, S.H.: Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. 20, 16 (2018). https://doi.org/10.1007/s11784-018-0501-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, L.Q., Cho, J.Y., Zhong, L.L., Rassias, MTh: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  13. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York (2003)

    Google Scholar 

  14. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)

    MathSciNet  MATH  Google Scholar 

  15. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat. Sez. I, VIII. Ser. 7, 91–140 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  17. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  18. He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112, 111–128 (2002)

    Article  MathSciNet  Google Scholar 

  19. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  20. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  Google Scholar 

  21. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Mat. Metody. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  23. Liu, L.S.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach space. J. Math. Anal. Appl. 194, 114–125 (1995)

    Article  MathSciNet  Google Scholar 

  24. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  Google Scholar 

  25. Malitsky, Y.V.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  26. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolation step for solving variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  28. Moudafi, A.: Viscosity approximating methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  29. Reich, S.: Constructive Techniques for Accretive and Monotone Operators. Applied Nonlinear Analysis, pp. 335–345. Academic Press, New York (1979)

    MATH  Google Scholar 

  30. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259–282 (2017)

    Article  MathSciNet  Google Scholar 

  31. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  32. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  33. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    Article  MathSciNet  Google Scholar 

  34. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 79, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  35. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 341, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  36. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Dedicated to Professor Le Dung Muu on the Occasion of his 70th Birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibali, A., Thong, D.V. & Tuan, P.A. Two simple projection-type methods for solving variational inequalities. Anal.Math.Phys. 9, 2203–2225 (2019). https://doi.org/10.1007/s13324-019-00330-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00330-w

Keywords

Mathematics Subject Classification

Navigation