Skip to main content

On Dirichlet to Neumann and Robin to Neumann operators suitable for reflecting harmonic functions subject to a non-homogeneous condition on an arc

Abstract

According to the Schwarz symmetry principle, every harmonic function vanishing on a real-analytic curve has an odd continuation, while a harmonic function satisfying homogeneous Neumann condition has an even continuation. Using a technique of Dirichlet to Neumann and Robin to Neumann operators, we derive reflection formulae for non-homogeneous Neumann and Robin conditions from a reflection formula subject to a non-homogeneous Dirichlet condition.

This is a preview of subscription content, access via your institution.

References

  1. Khavinson, D., Shapiro, H.S.: Remarks on the reflection principles for harmonic functions. J. Anal. Math. 54, 60–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ebenfelt, P., Khavinson, D.: On point to point reflection of harmonic functions across real analytic hypersurfaces in \(\mathbb{R}^n\). J. Anal. Math. 68, 145–182 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Study, E.: Einige elementare Bemerkungen über den Prozess der analytischen Fortsetzung. Math. Ann. 63, 239–245 (1907)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, Ph: The Schwarz Function and Its Applications. Carus Mathematical Monographs. MAA, Washington (1979)

    Google Scholar 

  5. Lewy, H.: On the reflection laws of second order differential equations in two independent variables. Bull. Am. Math. Soc. 65, 37–58 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garabedian, P.R.: Partial differential equations with more than two independent variables in the complex domain. J. Math. Mech. 9, 241–271 (1960)

    MathSciNet  MATH  Google Scholar 

  7. Aberra, D., Savina, T.V.: The Schwarz reflection principle for polyharmonic functions in \({\mathbb{R}}^2\). Complex Var. Theory Appl. 41(1), 27–44 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Savina, T.V., Sternin, BYu., Shatalov, V.E.: On the reflection law for the Helmholtz equation. Dokl. Math. 45(1), 42–45 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Savina, T.V.: On non-local reflection for elliptic equation of the second order in \({\mathbb{R}}^2\) (the Dirichlet condition). Trans. Am. Math. Soc. 364(5), 2443–2460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. López, R.R.: On reflection principles supported on a final set. J. Math. Anal. Appl. 351, 556–566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khavinson, D., Lundberg, E.: Linear Holomorphic Partial Differential Equations and Classical Potential Theory. Linear Holomorphic Partial Differential Equations and Classical Potential Theory, vol. 232. American Mathematical Soceity, Providence (2018)

    Book  MATH  Google Scholar 

  12. Beznea, L., Pascu, M.N., Pascu, N.R.: An equivalence between the Dirichlet and the Neumann problem for the Laplace operator. Potential Anal. 44, 655–672 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations. Graduate Studies, vol. 19, second edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  14. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston, New York (1969)

    MATH  Google Scholar 

  15. Ebenfelt, P., Khavinson, D., Shapiro, H.S.: Algebraic Asp Dirichlet Probl Ration Data. Quadrature domains and their applications, Operator Theory Advances and Applications 156, 151–172 (2005)

    Article  MATH  Google Scholar 

  16. Khavinson, D., Shapiro, H.S.: Dirichlet’s problem when the data is an entire function. Bull. Lond. Math. Soc. 24, 456–468 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Armitage, D.H.: The Dirichlet problem when the boundary function is entire. J. Math. Anal. Appl. 291(2), 565–577 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chamberland, M., Siegel, D.: Polynomial solutions to Dirichlet problems. Proc. Am. Math. Soc. 129, 211–217 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khavinson, D., Lundberg, E., Render, H.: Dirichlet’s problem with entire data posed on an ellipsoidal cylinder. Potential Anal. 46(1), 55–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khavinson, D., Lundberg, E., Render, H.: The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions. Can. Math. Bull. 60(1), 146–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khavinson, D., Stylianopoulos, N.: Recurrence relations for orthogonal polynomials and algebraicity of solutions of the Dirichlet problem. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya II, Partial Differential Equations. International Mathematical Series, vol. 12, pp. 219–228. Springer, Berlin (2010)

    MATH  Google Scholar 

  22. Putinar, M., Stylianopoulos, N.: Finite-term relations for planar orthogonal polynomials. Complex Anal. Oper. Theory 1(3), 447–456 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Render, H.: Real Bargmann spaces, Fischer decompositions and sets of uniqueness for polyharmonic functions. Duke Math. J. 142, 313–352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ebenfelt, P.: Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem. Complex Var. 20, 75–91 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Savina, T.V.: A reflection formula for the Helmholtz equation with the Neumann condition. Comput. Math. Math. Phys. 39(4), 652–660 (1999)

    MathSciNet  Google Scholar 

  26. Savina, T.V.: From reflections to a uniform elliptic growth. J. Math. Anal. Appl. (2019). https://doi.org/10.1016/j.jmaa.2019.05.021

Download references

Acknowledgements

The authors are very grateful to the anonymous referee for the suggestions, which helped to improve the paper. The second author would like to thank the organizers of the International Conference on Complex Analysis, Potential Theory and Applications in honour of Professor Stephen J Gardiner on the occasion of his 60th Birthday and Professor Lucian Beznea for providing the authors with his interesting papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Savina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldawsari, M., Savina, T. On Dirichlet to Neumann and Robin to Neumann operators suitable for reflecting harmonic functions subject to a non-homogeneous condition on an arc. Anal.Math.Phys. 9, 729–745 (2019). https://doi.org/10.1007/s13324-019-00314-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00314-w

Keywords